ECN publicatie: facebook
Titel:
The leaching of major and trace elements from MSWI bottom ash as a function of pH and time
 
Auteur(s):
 
Gepubliceerd door: Publicatie datum:
ECN Biomassa, Kolen en Milieuonderzoek 14-9-2010
 
ECN publicatienummer: Publicatie type:
ECN-W--06-024 Artikel wetenschap tijdschrift
 
Aantal pagina's:
18  

Gepubliceerd in: Applied Geochemistry (), , 2006, Vol.21, p.335-351.

Samenvatting:
In this paper, the leaching behaviour of major components (Al, Ca, SO4, Mg, Si, Fe, Na and DOC) and trace elements (Ni, Zn, Cd, Cu, Pb, Mo and Sb) from MSWI bottom ash is studied as a function of time over a wide range of pH, under pH-controlled conditions. Equilibrium geochemical modelling using the modelling framework ORCHESTRA is used to enable a process-based interpretation of the results and to investigate whether ‘equilibrium’ is attained during the time scale of the experiments. Depending on the element and setpoint-pH value, net concentration increases or decreases of up to one order of magnitude were observed. Different concentration–time trends (increase or decrease) are observed in different pH ranges. The direction of the concentration–time trends depends on: (1) the shape of the ‘equilibrium’ solubility curve, and (2) the position of the setpoint-pH in the leaching test relative to the natural pH of the sample. Although the majority of the elements do not reach steady state, leached concentrations over a wide pH range have been shown to closely approach ‘equilibrium’ model curves within an equilibration time of 168 h. The different effects that leaching kinetics may have on the pH dependent leaching patterns have been identified for a wide range of elements, and can generally be explained in a mechanistic way. The results are in support of the currently prescribed equilibration time of 48 h in the European standard for the pH-static leaching test (TS14997). Finally, this study demonstrates that pH-static leaching experiments such as described in the European standards (TS14497 and TS14429), in combination with selective chemical extractions and a mechanistically based modelling approach, constitute a powerful set of tools for the characterization of leaching processes in waste materials over a wide range of conditions.


Terug naar overzicht.