Refined life-cycle assessment of polymer solar cells

F. Lenzmann¹, J. Kroon¹, R. Andriessen², N. Espinosa³, R. Garcia-Valverde³, F. Krebs⁴

Summary

Comprehensive sketch of full environmental potential of polymer-PV by embedded energy analysis (EE).

Focus on critical components:
• transparent conductive ITO layer
• encapsulation

On a m² basis environmental characteristics of polymer OPV are very promising.

Spotlight of near-term R&D efforts of OPV community from environmental/sustainability point of view should be on:
• replacement of ITO layer
• optimization of encapsulation concepts

General device structure with design variables

1. Encapsulation (design variable)
 - Contact 2 (screen-printed Ag-grid from “PV410”)
 - Charge-selective layer 2 (Pedot:PSS or ZnO)
 - Photo-active layer (PCBM:P3HT blend)
 - Charge-selective layer 1 (Pedot:PSS or ZnO)
 - Contact 1 (design variable)
 - PET substrate

Choices for design variables

2. Contact 1:
 a) ITO
 b) Pedot:PSS/Ag-grid
 c) Al/Cr

Encapsulation:
 d) PET + moisture barrier, adhesive
 e) Steel, EVA, ETFE
 f) Glass, EVA
 - Indoor
 - Outdoor

Embedded energy analysis*

3.

<table>
<thead>
<tr>
<th></th>
<th>EE (MJ/m²)</th>
<th>EE (MJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET/contact 1</td>
<td>35-50</td>
<td>35-50</td>
</tr>
<tr>
<td>Charge select. layer 1</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>Photoactive layer</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>Charge select layer 2</td>
<td>5-35</td>
<td>5-35</td>
</tr>
<tr>
<td>Contact 2</td>
<td>20-30</td>
<td>20-30</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>10-15</td>
<td>200-380</td>
</tr>
<tr>
<td>Totals</td>
<td>~80-150</td>
<td>~300-500</td>
</tr>
</tbody>
</table>

* Study based on 50 kWp roll-based pilot line facility at Risø

Conclusions

4. • Embedded energy of polymer-OPV modules is ~ 80-150 MJ/m² for indoor mobile electronics and ~ 300-500 MJ/m² for outdoor power-generation applications (which differ on the level of encapsulation).
• Encapsulation is the dominant environmental load factor (at least for outdoor power applications).
• ITO replacement is required due to indium scarcity.

Acknowledgment: This work has been supported by the EC project HIFLEX (grant agreement no. 248678)

¹ ECN Solar Energy, P.O. Box 1, 1755 ZG Petten, The Netherlands, corresponding author: lenzmann@ecn.nl
² Holst Center/TNO, PO Box 8550, 5605 Eindhoven, The Netherlands
³ Univ. Politecnica de Cartagena, Campus M. del Mar C/Doctor Fleming s/n, 30202 Cartagena, Spain
⁴ Risø, Tech. Univ. Of Denmark, Frederiksbergvej 399, 4000 Roskilde, Denmark