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Abstract

The ongoing trend towards larger wind turbines intensifies the demand for more physically 
realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure 
loadings on the rotor blades better than current engineering models. In this report the 
mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code 
is described. This wind turbine simulation code is designated ROTORFLOW. In this method the 
fluid dynamics problem is solved through a boundary integral equation which reduces the 
problem to the surface of the configuration. The derivation of the integral equations is described 
as well as the assumptions made to arrive at them starting with the full Navier-Stokes equations. 
The basic numerical aspects in the solution method are described and a verification study is 
performed to confirm the validity of the implementation. Example simulations with the code 
show the flow solutions for a stationary wing and for a rotating wing in yawed conditions.

With the ROTORFLOW code developed in this project it is possible to simulate the unsteady flow 
around wind turbine rotors in yawed conditions and obtain detailed pressure distributions, and 
thus blade loadings, at the surface of the blades. General rotor blade geometries can be handled, 
opening the way to the detailed flow analysis of winglets, partial span flaps, swept blade tips, 
etc. The ROTORFLOW solver only requires a description of the rotor surface which keeps 
simulation preparation time short, and makes it feasible to use the solver in the design iteration 
process.
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Nomenclature

Dimensions

[ l ] length
[ m ] mass
[ t ] time

Roman symbols

g [ l t−2 ] gravitational acceleration
h [ l ] height, characteristic panel length
p [ m l−1 t−2 ] pressure
S [ l2 ] surface
V [ l3 ] volume
∂S [ l ] surface boundary
∂V [ l2 ] volume boundary

Greek symbols

Φ [ l2 t−1 ] velocity potential
ϕ [ l2 t−1 ] velocity perturbation potential
µ [ l2 t−1 ] dipole strength
ρ [ m l−3 ] mass density
σ [ l t−1 ] source strength

Tensors, matrices and vectors

~g [ l t−2 ] gravitational acceleration vector
n̄ [ – ] unit surface normal vector
¯̄τ [ m l−1 t−2 ] viscous stress tensor
τ̄ [ – ] unit tangential vector
~u [ l t−1 ] velocity vector
~x [ l ] coordinate vector
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Subscripts, superscripts and accents

( )∞ onset flow value
( )n value in surface normal direction
( )S value at the surface
( )T transpose operator
( )te value at the trailing edge
( )W value at the wake surface
( )µ value from dipole singularity
( )σ value from source singularity
( )+ value at fluid side
( )− value at internal side
~( ) vector
(̄ ) vector of unit length
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1. Introduction

The ongoing trend in wind turbine design is towards larger turbines, leading to increasing in-
vestment costs and related concerns regarding risk mitigation. The increase in size also leads to
relatively more flexible structures that are more susceptible to unsteady load occurrences. An im-
portant aspect of wind turbine rotor aerodynamics is the inherent unsteady character of the flow
caused by variations in wind speed and direction, irregularrotational speed, blade pitch actions,
rotor yaw misalignment, blade deformations and the dynamiccharacter of the wake behind the ro-
tor, to name a few. All this increases the need for wind turbine aerodynamics simulation tools that
can predict the effects of unsteady flow on the pressure loading on the wind turbine rotor blades.
The application of such a simulation tool in an engineering environment requires computation
times and problem turnover times to be reasonable.

In current engineering practice the wind turbine blade loading is estimated using experimentally
determined 2D airfoil characteristics for steady flow in combination with approximations for the
local ’effective’ onset velocity field and approximating models to compensate for unaccounted
unsteady and 3D effects. This 2D approach is computationally very fast but becomes more and
more questionable with increasing 3D flow and geometry characteristics. Example situations in
which 3D modelling capabilities become indispensable include cases with blade rotation, blade
pitch, blade sweep, rotor yaw misalignment, blade prebend,winglets, local aerodynamic control
surfaces, etc.

One approach to account for the unsteady effects and the three-dimensional character of the flow
problem is the deployment of solvers for the 3D unsteady Navier-Stokes equations which can in
principle generate solutions for general 3D unsteady viscous flows. A drawback of this approach
however is the large effort that is required to setup a simulation and the excessive computational
time to obtain a solution.

Inviscid flow

Viscous flow

~u

~u

Figure 1.1: Domain decomposition into an inviscid flow region and a viscous flow region.

The approach taken here is to combine the advantages of abovetwo approaches and develop
a solution method capable of providing detailed unsteady 3Dwind turbine rotor flow solutions
while avoiding excessive computational costs. To this end the flow domain is decomposed into
two subdomains: an outer region in which the flow is considered incompressible and inviscid
and is formulated in terms of a potential flow solver, and an inner region where the effects of
viscosity will be taken into account by an integral boundarylayer solver (see Van Garrel [8]) as
sketched in Figure 1.1. The two domains will be coupled through a so-called viscous-inviscid
interaction procedure. Both the development of the boundary layer solver (Özdemir and Van den
Boogaard [13]) and the viscous-inviscid interaction procedure (Bijleveld and Veldman [4]) are
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currently underway at ECN.

In this report the development of the potential flow solver for incompressible, inviscid 3D flows is
discussed. The code under development will be referred to asROTORFLOW.

The mathematical theory that forms the basis of flow field description for the incompressible
inviscid flow in the outer region of the ROTORFLOW code is described in Chapter 2.

In Chapter 3 some specific topics in the discretization of themathematical model will be discussed.

Some basic verification tests are reported in Chapter 4 for two grid types of a tri-axial ellipsoid
and the order of convergence will be established for this geometry.

Finally, in Chapter 5 some applications of the ROTORFLOW code for lifting bodies are shown.
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2. Potential Flow Model

The mathematical model for the three-dimensional unsteadyflow around wind turbine rotors is
considered. The flow is assumed to be incompressible and the effects of viscosity are assumed to
be confined to thin boundary layer and wake regions due to the high operational Reynolds num-
bers. Outside these regions the flow is assumed to be irrotational. The effects of heat conduction
are considered negligible. The main area of interest lies inthe detailed prediction of the unsteady
pressure loading on the wind turbine rotor blades as occurring during normal operation. An ac-
curate representation of the wake behind the rotor is of interest for its influence on the flowfield
around the upstream rotor blades.

Above observations and assumptions make it justifiable to model the flow around wind turbine
rotors with the fluid dynamics equations for unsteady potential flow. These equations will be cast
in a boundary integral equation form.

2.1. Introduction

A continuously differentiable flowfield around an arbitrarybody in 3D space can be described in
terms of velocity vector~u(~x) or equivalently in terms of sourceσ(~x) and vorticity~ω(~x) distribu-
tions throughout the volume plus an irrotational and solenoidal onset flow~u∞(~x) as depicted in
Figure 2.1.

x

y

z

~ω

σ

~ω = ~∇× ~u

σ = ~∇ · ~u

~u ~u = ~u∞ + ~uσ + ~uω

~uσ = 1
4π

∫∫∫

σ~r
r3
dV

~uω = 1
4π

∫∫∫

~ω×~r
r3 dV

Figure 2.1: Flowfield representation in terms of velocity vector field~u(~x) or in terms of sources
σ(~x) and vorticesω(~x).

An approximation to the volumetric source and vorticity distributions is to restrict them to the body
and wake surfaces as indicated in Figure 2.2 which will lead to divergence free and irrotational
flow everywhere except across these surfaces. The resultingboundary integral equations can be
solved with a so called panel method in which the surface of the configuration is covered with
panels where boundary conditions are imposed in selected points.
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PSfrag
σ

~ω
∇Φ

Figure 2.2: Flowfield approximation.

2.2. Governing Equations

General fluid flows are described by the Navier-Stokes equations that express the physical princi-
ples of conservation of mass, momentum, and energy. For a point ~x in volumeV ∈ R

3 at timet,
the equations for mass, momentum, and energy conservation in differential form are respectively

∂ρ

∂t
+∇·(ρ~u) = 0, (2.1)

∂(ρ~u)

∂t
+∇·(ρ~u~u) +∇p− ρ~g −∇·¯̄τ = ~0, (2.2)

∂(ρE)

∂t
+∇·(ρE~u) +∇·(p~u)− ρ~g · ~u− Q̇+∇·~q −∇·(¯̄τ · ~u) = 0, (2.3)

with ρ(~x, t) the mass density,~u(~x, t) the fluid velocity, pressurep(~x, t), ~g the gravitational accel-
eration vector, and̄̄τ(~x, t) the viscous stress tensor. The total energy per unit mass is denoted by
E(~x, t) and the termQ̇(~x, t) in the energy equation (2.3) is the heating that works on the fluid vo-
lume directly, for example by radiation, and has dimension ’energy per unit volume per unit time’.
Heating due to thermal conduction is accounted fort by the term with heat flux vector~q(~x, t) that
has dimension ’energy per unit area per unit time’.

To close the system of equations, the Navier-Stokes equations are supplemented by two equations
of state and two constitutive relations. The latter model the viscous stress tensor¯̄τ(~x, t) and the
heat flux vector~q(~x, t) in terms of available variables. See Appendix B for more details.

We consider the fluid dynamics equations for wind turbine applications where the flow is assumed
to be incompressible and the effects of heating are considered negligible. Fluid particle mass
density is considered constant. The effects of viscosity are assumed to be negligible due to the
high operational Reynolds numbers. These considerations make it feasible to reduce the set of
equations. For unsteady incompressible flow, the mass conservation equation reduces to

∇·~u = 0. (2.4)

Note that although the equation does not have an explicit time derivative term, unsteady boundary
conditions will introduce time dependency in the solution.The equations expressing momentum
conservation for unsteady, incompressible, inviscid flowsread:

ρ
∂~u

∂t
+ ρ(~u · ∇)~u+∇(p+ ρgh) = ~0, (2.5)

whereh is the distance above the ground.

A significant reduction in complexity can be achieved if it isassumed that rotational flow is con-
fined to infinitesimal thin boundary layer and wake regions, an is irrotational everywhere else, that
is ∇×~u = ~0. This allows us to write the velocity vector field~u(~x, t) as the gradient of a scalar
velocity potential functionΦ(~x, t):

~u = ∇Φ. (2.6)
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Substitution of the velocity potential gradient (2.6) in the continuity equation (2.4) gives the
Laplace equation for the velocity potential in domainV :

∇·∇Φ = 0. (2.7)

Substituting the gradient of the velocity potential (2.6) in the momentum conservation equa-
tions (2.5) results in the Bernoulli equation for unsteady potential flow:

∂Φ

∂t
+

1

2
∇Φ · ∇Φ+

p

ρ
+ gh = C(t). (2.8)

2.3. Boundary Integral Equation

It is assumed that flow domain domainV can be decomposed into a set of non-overlapping vol-
umesVm with boundaries∂Vm (see Figure 2.3). LetSm,k be the part of the boundary that the two
volumesVm andVk have in common:

Sm,k = ∂Vm ∩ ∂Vk, m 6= k.

The surfaceS of the configuration and its wake is now described by the complete set of inner
boundaries:

S = ∪Sm,k.

It can be shown (Appendix C) that the solution of the Laplace equation (2.7) for the velocity
potentialΦ(~xP , t) in a point~xP in volumeV can be formulated in terms of a reference velocity
potentialΦ∞(~xP , t) and perturbation velocity potential contributionsϕµ(~xP , t) andϕσ(~xP , t) from
dipole singularity distributionsµ(~xQ, t) and source singularity distributionsσ(~xQ, t) on the inner
boundaries repectively, that is

Φ = Φ∞ + ϕµ + ϕσ, (2.9)

whereΦ∞(~xP , t) is the unperturbed velocity potential in point~xP , the velocity potential if no inner
boundaries were present. However, the unperturbed velocity potentialΦ∞ could also include
contributions from a designated set of source and dipole singularities in the nearby flow field.

The perturbation velocity potentials induced in point~xP by the dipole and source distributions on
surfaceS are defined by

ϕµ(~xP , t) =
−1

4π

∫∫

S

µ
n̄m · ~r

r3
dS, (2.10)

ϕσ(~xP , t) =
−1

4π

∫∫

S

σ
1

r
dS, (2.11)

wheren̄m(~xQ, t) is the unit normal vector in~xQ ∈ ∂Vm,k that is pointing into volumeVm. The
vector~r is defined as the vector from a point~xQ on the surface to evaluation point~xP , whereas its
length is denoted byr, that is,

~r = ~xP − ~xQ, r = |~r |, for ~xQ ∈ Sm,k. (2.12)

For problems where the evaluation point~xP and the boundarySm,k are moving relative to each
other, we have~r = ~r(t).

ECN-E--11-071 11
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V4

x

y

z

∂V1,2

∂V1,3

∂V1,4

∂V3,4

n̄1

n̄1

n̄1

n̄1

n̄1

n̄1

n̄2

n̄3

n̄3

n̄4

Figure 2.3: The flow domainV ∈ R
3 is the union of the non-overlapping volumesV and inner

boundaries∂Vm,k that separate volumeVm from volumeVk. Unit normal vector̄nm is defined to
point into volumeVm.

The dipole strengthµ(~xQ, t) and the source strengthσ(~xQ, t) in point~xQ at the surface, are related
to the velocity potential valuesΦm(~xQ, t) andΦk(~xQ, t) on both sides of the surface by

µ(~xQ, t) = −(Φm − Φk), (2.13)

σ(~xQ, t) = ∇(Φm −Φk) · n̄m. (2.14)

As shown in Appendix C, the integral for the dipole singularity distribution causes a jump in the
velocity potential of strengthµ(~xP , t) across the surface:

ϕ(~xP → S±, t) = ϕp
σ(~xP , t) + ϕp

µ(~xP , t) ∓
1

2
µ(~xP , t), (2.15)

whereS+ andS− denote the sides ofSm,k when approached from volumeVm or from volumeVk
respectively. The twoϕp(~xP ∈ S) terms on the right hand side of equation (2.15) are to be inter-
preted as Cauchy Principal Value or Finite Part integrals over the complete set of inner surfaces,
with an infinitesimal region around the singular point excluded from the surface of integration.

2.4. Boundary Conditions

The goal is now to find a solution for the Laplace equation (2.7) for the potential fieldΦ(~xP , t)
as formulated in terms of reference potential fieldΦ∞(~xP , t) plus source and dipole perturbation
potential fieldsϕσ(~xP , t) andϕµ(~xP , t), subject to the appropriate boundary conditions.

For surfaces of thick bodies we will employ internal Dirichlet boundary conditions as introduced
by Morino and Kuo [12]. This formulation assumes that we are only interested in the flow field on
one side of the surface, and that the volume at the other side of the surface is of no interest and can
be prescribed. This excludes the use of internal Dirichlet boundary conditions for the flow over
infinitesimal thin surfaces.

12 ECN-E--11-071



2.4.1. Body Surface

For thick bodies, the internal Dirichlet formulation will be employed where it is assumed that only
the solution in the volume on one side of the surface is of interest. LetS+ denote the side of
surfaceSm,k in volumeVm where we want to obtain a solution of the flow problem, and letS−

denote the side of the surfaceSm,k in volumeVk that is considered non-physical and exhibits a
fictitious flow.

The boundary condition at surface sideS+ is such that the flow velocity at the surface in normal
direction, is equal to normal component of the surface velocity ~uS(~xP , t), plus a specified velocity
vn(~xP , t) in normal direction:

∇Φm · n̄m = ~uS · n̄m + vn, ~xP → S+. (2.16)

The normal velocity distribution can be used for example to simulate boundary layer displacement
thickness effects or for the simulation of inflow through a suction slot. The local surface velocity
~uS(~xP , t) may be composed of solid body rotation, surface translation, surface rate of deformation
and so on.

Suppose the velocity potential in the fictitious flow domainsVk is known in advance,

Φk = Φk(~xP , t), ~xP ∈ Vk, (2.17)

and let
~uk(~xP , t) = ∇Φk, ~xP ∈ Vk. (2.18)

For point~xP in regionVk approaching the surfaceS−, the boundary integral equation (2.9) now
reads:

ϕµ(~xP , t) + ϕσ(~xP , t) = Φk(~xP , t)− Φ∞(~xP , t), ~xP → S−. (2.19)

Substitution of the boundary condition (2.16) atS+ and the known velocity potential in volume
Vk (2.17) in the definition of the source strength (2.14), givesan expression for the source strength
in terms of known quantities:

σ(~xQ, t) = (~uS − ~uk) · n̄m + vn, ~xQ ∈ S. (2.20)

The boundary integral equation (2.19) at~xP → S− now gives an expression involving the unknown
dipole strengthµ(~xQ, t) as a function of known quantities.

Taking the surface gradient of the dipole strength (2.13) gives us for the tangential component of
the velocity at the surface side of interestS+

∇SΦm(~xP , t) = ∇SΦk − ∇Sµ, ~xP → S+. (2.21)

Combining the normal velocity from the boundary condition (2.16), the expression for the source
strength in equation (2.20), and the tangential velocity from equation (2.21) gives an expression
for the velocity at the surface in the inertial coordinate system:

~u(~xP , t) = ~uk + σ n̄m − ∇Sµ, ~xP → S+. (2.22)

Equation (2.22) states that the velocity at the surface sideof interest is composed of a known base
flowfield ~uk and a perturbation flowfield due to the source and dipole singularity distributions.

Notice that the velocity potential fieldΦk, and consequently velocity field~uk, still has to be defined
in the non-physical domains. This gives some freedom to basethis choice on the properties that
the resulting set of equations will have. A choice that is expected to give small numerical errors is

ECN-E--11-071 13



one that results in smooth and weak source and dipole distributions. Here it is decided to set the
fictitious flowfield equal to the onset flowfield as was introduced by Morino and Kuo [12], that is
Φk = Φ∞, and~uk = ~u∞. Assuming a known surface velocity~uS and normal velocityvn, this
gives the following set of equations to determine the velocity distribution at the surface:

σ = (~uS − ~u∞) · n̄+ vnn̄,
ϕµ = −ϕσ, ~xP → S−,
~u(~xP , t) = ~u∞ + σ n̄ − ∇Sµ, ~xP → S+.

(2.23)

2.4.2. Wake Surface

In the previous section we derived a set of equations to determine the dipole strength distribution
the solid body surface. In this section the conditions for the wake surface will be determined. At
the trailing edge of a lifting body, the point where the vorticity leaves the surface (see Figures 2.1
and 2.2), a linear Kutta condition will be imposed that results in a smooth flow with finite velocity
at that point. This condition was used by Morino and Kuo [12] and equates the dipole strength at
the start of the wake equal to the jump in dipole strengths across the trailing edge:

µwte = JϕKte = JµKte. (2.24)

µ

µ

µw

µwte

Figure 2.4: Trailing edge Kutta condition.

For the evolution of the wake we will make use of the theorems of Helmholtz and Kelvin for vortic-
ity dynamics (see Batchelor [3], Cottet and Koumoutsakos [5], Saffman [14]). In incompressible
flows the inviscid evolution of the vorticity field can be obtained by applying the curl operator
to the momentum conservation equation 2.2. After some manipulation, the resulting Lagrangian
description is

D~ω
Dt

= ~ω · ∇~u. (2.25)

A similar relationship is valid for material line elementsδ~l and can be obtained by replacing~ω in
above equation withδ~l. We can thus conclude that in incompressible inviscid flows,vortex lines
behave as material line elements. Kelvin’s circulation theorem for incompressible inviscid flows
reads

DΓ

Dt
= 0, (2.26)

where circulationΓ is defined by a surface integral of vorticity over a cross section of a vortex
tube or recast into a contour integral around the vortex tubewith the help of Stokes’ theorem (see
Appendix A)

Γ =

∫∫

S

~ω · n̄ dS =

∫

∂S

~u · τ̄ ds, (2.27)

with n̄ the unit normal vector to the cross section surfaceS, and τ̄ the unit vector tangential to
the contour∂S. From above equations it can be concluded that in incompressible inviscid flows

14 ECN-E--11-071



a tube of vorticity preserves its identity when moving with the fluid. In terms of the evolution of
wake element position~Xw and wake element dipole strengthµw the corresponding equations are

d ~Xw

dt
= ~u, ~Xµ(t0) = ~xte(t0), (2.28)

and
Dµw
Dt

= 0, µw(t0) = µwte(t0), (2.29)

wheret0 is the time of wake element creation.

2.5. Aerodynamic Forces

The total force and moment with respect to the coordinate system origin are determined by inte-
grating the pressure force over the surface of the configuration (see Figure 2.5):

~F (t) =

∫∫

S

p n̄ dS, (2.30)

~M(t) = −

∫∫

S

p n̄× ~r dS, (2.31)

where~r is the position vector to the surface, andp the pressure that can be obtained from the
Bernoulli equation (2.8).

x

y

z

dS

S

~r

pn̄

Figure 2.5: Infinitesimal surface contribution to the totalforce and moment acting on the configu-
ration.
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3. Numerical Approach

The continuous mathematical description of the flow problemfor wind turbine applications will
be discretized such that it is possible to numerically determine the solution with apanel method.
To this end we will introduce approximations and discretizations for the geometry, the singular
surface integral equations, and the boundary conditions. The geometry will be described in terms
of bodies and wakes that consist of patches of structured grid cells, the so called ’panels’ in the
method. The quadrilateral panels will be described by a bilinear geometry where possible and by
a planar surface elsewhere. Each panel on a body or wake patchis assigned a constant strength
dipole distribution and for body patches the panels are alsoassigned a constant strength source
distribution. Just below the surface of the body panel midpoints so calledcollocation pointsare
located where the boundary conditions will be fulfilled.

3.1. Geometry

The surface of the configuration is subdivided into one or more patches which are discretized in a
structured grid fashion. The grid cells on the surface of theconfiguration are in the boundary inte-
gral discretization called ’panels’, hence the name panel method for this type of solution method.
An example rotor blade surface subdivided into multiple patches, each patch consisting of an array
of panels, is shown in Figure 3.1.

Figure 3.1: Rotor blade surface subdvided into multiple patches.

Each patch consist of an array of nodes ini andj direction (see Figure 3.2b) which determine the
corner nodes of the panels. The vector normal to the surface is defined to be in the direction of the
right-hand cross product̄n ≡ ī× j̄ as is indicated in Figure 3.2a.

3.2. Panel Method

The boundary integral equations in (2.23) are discretized as a low-order panel method (see Hoeij-
makers [9], Katz and Plotkin [10]). In this approach each panel carries a constant strength source
σ and/or dipoleµ singularity distribution. Boundary conditions are enforced in each panel col-
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x

y
z

i

j

n̄

(a) The normal vector̄n is assumed to point into the flow
domain and is deduced from the right-hand vector cross
product of thei andj directions:n̄ ≡ ī× j̄

i

j

(b) Patch node and panel ordering in a structured
grid usingi andj directions. Here the normal
vector points out of the paper.

Figure 3.2: Node ordering and panel normal vectors in a patch.

location point~xi, located just below the panel’s surface midpoint. The resulting set of discrete
equations for thei = 1..N collocation points is

∑

j

Aijµj +
∑

j

Bijσj = 0, for i = 1..N, (3.1)

whereAij andBij are so-called aerodynamic influence coefficients defined by

Aij =
−1

4π

∫∫

Sj

n̄j · ~r

r3
dS, (3.2)

Bij =
−1

4π

∫∫

Sj

1

r
dS, (3.3)

in which
~r = ~xi − ~xQ, r = |~r |, and ~xQ ∈ Sj . (3.4)

3.2.1. Dipole Velocity Potential

The velocity potential induced at point~xP by a panel with surfaceSj and dipole distributionµ is
given by

ϕµ(~xP ) =
−1

4π

∫∫

Sj

µ
n̄ · ~r

r3
dS, (3.5)

where
~r = ~xP − ~xQ, r = |~r |, and ~xQ ∈ Sj. (3.6)

The usual approach taken in low-order panel methods is to usea flat approximation for the
panel geometry for which analytical results exists for the integral in equation (3.5) (see Katz and
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Plotkin [10]). Flat panels, however, lead to gaps between the panels in the surface approximation,
that grow larger with increasing surface twist. Especiallyfor panels in a highly deformed wake
surface this flat panel approximation is inadequate. The approach taken here is to use a bilinear
representation for the panel geometry (see Figure 3.3) which gives a better surface approximation
and avoids gaps altogether.

x

y

z

Figure 3.3: A bilinear quadrilateral panel.

For a unit strength dipole distribution (µ = 1) the integral in equation (3.5) is equal to the solid
angle and can be determined by the projection of the warped panel on a sphere with unit radius
and the evaluation point~xP as its center (see Figure 3.4). The solid angle is then the ratio between
the projected panel area and the surface area of the sphere. We use the fact that the area of a
quadrilateral on a sphere with unit radius is equal to the sumof the included angles minus2π:

area = −2π +

4
∑

i=1

βi. (3.7)

β1

β2

β3

β4

x

y

z

n̄

~xP

Figure 3.4: The solid angle is the ratio between the area of the projected panel and the surface area
of the sphere with the evaluation point as its center. The area of the projected quadrilateral can be
determined from its included anglesβi.

3.2.2. Source Velocity Potential

The velocity potential induced by a panel with surfaceSj and source distributionσ in point ~xP is
given by

ϕσ(~xP ) =
−1

4π

∫∫

Sj

σ
1

r
dS. (3.8)
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For the exact evaluation of this integral for constant source strengthσ on each panel the reader is
referred to the analytical formula in Katz and Plotkin [10].

3.2.3. Dipole Surface Gradient Velocity

To obtain the total velocity~u at the boundary of the configuration, one of the components in
equation (2.22) that has to be determined is the surface gradient of the dipole strength∇Sµ. This
is accomplished with the help of with Gauß’ Theorem (see Appendix A), giving an expression for
the average dipole surface gradient inside contour∂S (see Figure 3.5):

∇Sµ =
1

S

∫

∂S

µ ν̄ ds, (3.9)

where ν̄ is the unit outward vector normal to the contour and tangential to the surface. The
contour∂S is defined by the collocation points of four neighboring panel. As an approximation,
the perturbation velocity in the grid node due to the dipole distribution is assigned this average
surface gradient.

x

y

z

~τ
ν̄

~u

Figure 3.5: Definitions used in the contour integral to determine the surface perturbation velocity
in a grid node due to a dipole distribution.
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4. Verification

In this chapter the results of the convergence tests on an ellipsoid with semi-axes4, 2, 1 are re-
ported. For tri-axial ellipsoids analytical solutions exist. This makes it possible to verify the
implemented panel method for correctness of system of equation setup, the solution of the system
by a linear equation solver, and the application of postprocessing steps necessary to obtain the sur-
face velocity distribution. The verification tests are performed for a single patch grid that exhibits
two grid poles, and a six patch grid that does not possess collapsed edges. It is shown that for the
tri-axial ellipsoid the rate of convergence for the perturbation potential and the pressure coefficient
surface distributions are up to orderO(h2), whereh is a characteristic panel length.

4.1. Analytical Solution

For ellipsoidal bodies in potential flow analytical solutions exist (see Durand [1], Lamb [11]). If
we define the functionψ(~x) as

ψ(~x) =
(x

a

)2
+
(y

b

)2
+
(z

c

)2
− 1, (4.1)

the surface of an ellipsoid with semi-axesa, b, c is described byψ(~xe) = 0. The perturbation
potential on the surface of this ellipsoid for a general onset flow ~u∞ = (u∞, v∞, w∞)T, is given
by

ϕ(~xe) = u∞xe
α0

2− α0
+ v∞ye

β0
2− β0

+w∞ze
γ0

2− γ0
, (4.2)

where

α0 =

∞
∫

0

a b c

(a2 + λ)
√

(a2 + λ)(b2 + λ)(c2 + λ)
dλ, (4.3)

β0 =

∞
∫

0

a b c

(b2 + λ)
√

(a2 + λ)(b2 + λ)(c2 + λ)
dλ, (4.4)

γ0 =

∞
∫

0

a b c

(c2 + λ)
√

(a2 + λ)(b2 + λ)(c2 + λ)
dλ. (4.5)

Above integrals are regular and can be numerically evaluated given a specific choice for semi-axes
a, b, c. In the current study, the integrals were integrated with anadaptive Simpson’s quadrature
rule. For the total potential on the surface of the ellipsoidwe can write

Φ(~xe) = ~u∞ · ~xe + ϕ(~xe) =
2u∞
2− α0

xe +
2v∞
2− β0

ye +
2w∞

2− γ0
ze. (4.6)

The velocity vector on the surface of the ellipsoid can now bedetermined from the surface gradient
of the total potential (4.6).
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4.2. Geometric Convergence

First the convergence of the discretised geometry towards the exact ellipsoidal surface is inves-
tigated. The investigated geometric norm is based on the distance between the panel mid points
~xc, and the points~xe on the surface of the ellipsoid. The surface is discretized as a single-domain
grid with poles along the x-axis as shown in Figure 4.2a. The vertex coordinates are obtained
by scaling a sphere with a cosine distribution in x-direction and an equidistant distribution in cir-
cumferential direction. Anm×m panelling was used for the geometric convergence study, with
m = 8, 16, 32, . . . , 1024. The points~xe are obtained by projecting the collocation points~xc along
the normal vector̄nc onto the surface.

The discrete versions of the error norms are defined by

L1(x) =
1

n

n
∑

i=1

|xi|, (4.7)

L2(x) =

(

1

n

n
∑

i=1

|xi|
2

)1/2

, (4.8)

L∞(x) = max
i=1,n

|xi|, (4.9)

where|xi| is the absolute value of the difference between exact and approximated values in case
of scalar quantities, and the length of the vector differences in case of vectorial quantities.

The variation of the error norms withh−1 is shown in Figure 4.1, whereh = N−
1
2 is a charac-

teristic panel length andN the total number of panels. As can be seen, the error isO(h2) in the
geometric norms as expected. It should be noted that the largest errors were invariably for panels
near the poles in the grid. This gives an indication that for practical purposes we would have to
refine the mesh in these regions of large surface curvature toobtain a more evenly distributed error.
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Figure 4.1: Geometric convergence of distance between panel mid points and the surface of an
ellipsoid with semi-axes4, 2, 1 as a function ofh−1, whereh is a characteristic panel length.
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XY

Z

(a) Single patch,32× 32 panelling.

XY

Z

(b) Six patches,16× 16× 16 panelling.

Figure 4.2: Panellings for a spheroid with semi-axes4, 2, 1.
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4.3. Velocity Potential Convergence

In the panel method that is implemented, the perturbation potential in the collocation points of the
panels is obtained using a direct solver for the system of equations. The perturbation potential
thus obtained, is compared to the analytical solution in thepoints projected in normal direction at
the exact ellipsoid surface. For this study two panellings are used, a single patch panelling and
a six patch panelling, of which example grids are shown in Figure 4.2. The six patch ellipsoid
was introduced to see if the behaviour in the grid poles of thesingle patch configuration could be
avoided.

4.3.1. Single Patch Grid

In Figure 4.3, the error in the velocity potential is shown asa function of characteristic panel length
h for the single patch grid. As can be seen, the error is ofO(h2) in the velocity potential for this
panelling. The largest errors appear near the poles of the grid, which in this case coincide with the
areas of largest surface curvature, as is shown in Figures 4.4 and 4.5. In case the stagnation points
coincide with the poles of the grid, the largest errors occurs elsewhere on the surface as can be
seen in Figure 4.6.
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Figure 4.3: Error norms in perturbation potential as a function of h−1, whereh is a characteristic
panel length, for onset flows along the three coordinate axesof a single patch grid.
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(a) Perturbation potential error.
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(b) Closeup of the pole region.

Figure 4.4: Perturbation potential error distribution fora single patch64 × 64 panel ellipsoid and
an onset flow in z-direction. The largest errors appear near the poles of the grid.
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Figure 4.5: Perturbation potential error distribution fora single patch64× 64 panel ellipsoid and
an onset flow in z-direction. A smooth potential error distribution across the patch edges is shown.
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Figure 4.6: Perturbation potential error distribution fora single patch64× 64 panel ellipsoid and
an onset flow in x-direction. The largest errors occur outside the poles of the grid.
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4.3.2. Six Patch Grid

In Figure 4.7, the variation of the error in the velocity potential is shown as function of charac-
teristic panel sizeh for the six patch grid. As can be seen, the error is ofO(h2) in the velocity
potential for this panelling. The largest errors appear near areas of large surface curvature, as is
shown in Figures 4.8a and 4.8b.
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Figure 4.7: Error norms in perturbation potential as a function of h−1, whereh is a characteristic
panel length, for onset flows along the three coordinate axesof a six patch grid.
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(b) Closeup of a region of large curvature.

Figure 4.8: Perturbation potential error distribution fora six patch32 × 32 × 32 panel ellipsoid
and an onset flow in z-direction.
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4.4. Presssure Coefficient Convergence

The pressure coefficients are obtained, via the Bernoulli equation (2.8), from the velocities at the
surface. In turn, these velocities are determined in the grid vertices involving a line integral of the
perturbation potential through the surrounding collocation points as expressed in equation (3.2.3).
At the edges of the grid the velocities are obtained using thepotential information of the abutting
patch. Two types of panellings are used, one in which the geometry is described by a single patch
and one in which six patches are used (see Figure 4.2).

4.4.1. Single Patch Grid

As can be seen in Figure 4.9 the L1-, L2- and L∞ error norms in the pressure coefficient for onset
flows along all three coordinate axes show a rate of error reduction of orderO(h2). It also shows
that the largest errors appear for an onset flow in z-direction.
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Figure 4.9: Error norms in pressure coefficient as a functionof h−1, whereh is a characteristic
panel length, for onset flows along the three coordinate axesof a single patch grid.

In Figure 4.10, the pressure coefficient error distributionis plotted for an onset flow in z-direction.
Because the potential already showed the highest error gradient in the poles of the grid (see Fig-
ure 4.4), it is of no surprise that the pressure coefficient error is highest in these poles also.
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Figure 4.10: Pressure coefficient error distribution for a64× 64 panel ellipsoid and an onset flow
in z-direction. The largest errors appear in the poles of thegrid.
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4.4.2. Six Patch Grid

In Figure 4.11, the L1-, L2- and L∞ error norms in the pressure coefficient for onset flows along
all three coordinate axes are shown for an ellipsoid discretized with a six patch grid. The error is
shown to be of orderO(h2). Notice that the error norms for the six patch grid show a smoother
convergence behavior than the single patch in Figure 4.9.
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Figure 4.11: Error norms in pressure coefficient as a function of characteristic panel lengthh, for
onset flows along the three coordinate axes of an ellipsoid constructed from six patches.

In Figure 4.12 the pressure coefficient error distribution is plotted for an onset flow in z-direction.
The largest errors occur in regions of large curvature wherethe mesh is relatively coarse. Note
that the pressure coefficient distribution itself has highly negative values in the region of highest
curvature (see Figure 4.13) at this onset flow condition.
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(a) Pressure coefficient error.
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(b) Closeup of a region or large curvature.

Figure 4.12: Pressure coefficient error distribution for a six patch32× 32× 32 panel ellipsoid and
an onset flow in z-direction.
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Figure 4.13: Pressure coefficient distribution for a six patch 32 × 32 × 32 panel ellipsoid and
an onset flow in z-direction. Note that the minimum values arereached in the region of highest
curvature.
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5. Application

The current code, designated ROTORFLOW, can be applied to compute inviscid, incompressible
flows around arbitrary 3D lifting and non-lifting bodies in rotating and translating motion. It is
unfortunate that for lifting wings in 3D flow no exact analytical testcases exist like those reported
in Chapter 4 for the non-lifting tri-axial ellipsoid. The flow solution for a wing of large aspect ratio
with an elliptic planform however can be regarded quasi two-dimensional in its center section. This
enables us to compare the pressure distribution at that position with a well established 2D airfoil
analysis code for steady flow.

5.1. Lifting wing in steady flow

From a modified NACA 0018 airfoil a wing with an elliptic planform was constructed. The span of
the elliptic wing was 200 and the root chord was set to 1, giving an aspect ratio of over 254. For this
wing the flow at 5 degrees angle-of-attack was simulated and the sectional pressure distribution at
half span position was extracted. For the same airfoil section the inviscid pressure distribution at
the wing’s effective angle-of-attack of 4.961 degrees was computed with the 2D higher order panel
code XFOIL from Drela [6]. As shown in Figure 5.1 the XFOIL andthe ROTORFLOW pressure
distributions are comparable.
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Figure 5.1: Inviscid flow pressure distributions for an airfoil at 5 degrees angle-of-attack.

5.2. Rotating wing in unsteady flow

As a demonstration of the capabilities of the current code the flow solution for a single blade rotor
configuration under30 degrees of yaw was computed where an untwisted elliptic wingwas used
as blade. For the prescription of the motion of the blade a geometry manipulation approach like
the one in the AWSM code [7] was used.
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Figure 5.2: Unsteady flow for a single blade rotor at 30 degrees yaw.
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Notice that, due to the lack of blade twist in this blade, the inner airfoil sections experience a higher
local angle-of-attack and consequently have a higher suction peak near the nose of the airfoil.
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A. Mathematical Compendium

This chapter contains a collection of some useful mathematical formulas. In index notation for-
mulas summation over repeated indices is assumed.

Divergence Theorem: The Divergence Theorem is Gauß’ theorem for a vector function ~b and
relates the volume and surface integrals of the vector field in a volumeV enclosed by the
surface∂V by:

∫∫∫

V

(∇·~b) dV =

∫∫

∂V

~b · n̄ dS.

Gauß’ Theorem: Gauß’ theorem gives a relation between the volume and surface integrals of a
continuously differentiable (i.e.C1 functions with continuous derivative) arbitrary tensor
function Tij over a volumeV enclosed by piecewise smooth boundary∂V with outward
unit normal vector̄n. The tensorTjk may be a scalar, vector or tensor function of any rank.
In index notation Gauß’ theorem reads:

∫∫∫

V

∂i(Tjk) dV =

∫∫

∂V

ni Tjk dS.

Some special forms of Gauß’ theorem are obtained when specific choices are substituted for
tensorTjk. Substituting vector fieldbi for Tjk for example gives the Divergence Theorem
and when scalar fieldφ is substituted forTjk we arrive at the Gradient Theorem.

Substitution ofǫkijbj for tensorTjk gives

∫∫∫

V

(∇×~b) dV =

∫∫

∂V

(n̄×~b) dS.

Gradient Theorem: The Gradient Theorem is Gauß’ theorem for a scalar functionφ and relates
the volume and surface integrals of the scalar field over a volumeV enclosed by the surface
∂V by:

∫∫∫

V

(∇φ) dV =

∫∫

∂V

φn̄ dS

Green’s identities: One of Green’s identities is obtained whenǫkijbj is substituted forTjk in
Gauß’ theorem. Combined over all componentsk this leads to:

∫∫∫

V

(∇×~b) dV =

∫∫

∂V

(n̄×~b) dS.

Green’s first identity is obtained when(ψ ∂iφ) is substituted into Gauß’ theorem forTjk,
whereψ andφ are once and twice continuously differentiable scalar functions respectively:

∫∫∫

V

ψ∇2φ dV =

∫∫

∂V

ψ
∂φ

∂n
dS −

∫∫∫

V

∇φ · ∇ψ dV,
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where ∂φ/∂n = ∇φ · n̄ denotes the derivative in the direction of the outward normal and
∇2=∇·∇ is the Laplacian operator.

Green’s second identity is obtained from the first identity by interchanging the role ofψ and
φ and subtract the resulting equations. Now bothψ andφ are assumed twice continuously
differentiable scalar functions. Green’s second identityreads:

∫∫∫

V

(

ψ∇2φ− φ∇2ψ
)

dV =

∫∫

∂V

(

ψ
∂φ

∂n
− φ

∂ψ

∂n

)

dS.

Stokes’ Theorem: Stokes’ theorem relates the line integral of a smooth vectorfield ~b over a
closed curve∂S to the surface integral of~b over an open surfaceS bounded by curve∂S.
The orientations of unit tangent vectorτ̄ to curve∂S and the unit normal vector̄n to surface
S are related through the right hand rule.

x

y

z

S dS

∂S

n̄

τ̄

Stokes’ theorem reads:

∫∫

S

(∇×~b) · n̄ dS =

∫

∂S

~b · τ̄ ds.

Substantial derivative: The substantial derivative, also know as material derivative, is the time
rate of change following a fluid element moving with velocity~u, and can be split into the
local and the convective derivative:

D
Dt

=
∂

∂t
+ ~u · ∇.
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Vector identities:

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b)

~a× (~b× ~c) = ~b (~a · ~c)− ~c (~a ·~b)

(~a×~b)× ~c = ~b (~a · ~c)− ~a (~b · ~c)

(~a×~b) · (~c× ~d) = (~a · ~c)(~b · ~d)− (~a · ~d)(~b · ~c)

(~a×~b)× (~c× ~d) = ~c (~a · (~b× ~d))− ~d (~a · (~b× ~c))

= ~b (~a · (~c× ~d))− ~a (~b · (~c× ~d))

~x = ~x·(~b×~c)

~a·(~b×~c)
~a+ ~x·(~c×~a)

~a·(~b×~c)
~b+ ~x·(~a×~b)

~a·(~b×~c)
~c

∇(fg) = f(∇g) + g(∇f)

∇(~a ·~b) = ~a× (∇×~b) +~b× (∇×~a) + (~a · ∇)~b+ (~b · ∇)~a
∇·(f~a) = f(∇·~a) + ~a · (∇f)

∇·(~a×~b) = ~b · (∇×~a)− ~a · (∇×~b)

∇×(~a×~b) = (~b · ∇)~a− (~a · ∇)~b+ ~a (∇·~b)−~b (∇·~a)
∇×(f~a) = f (∇×~a) +∇f × ~a

∇×(∇×~a) = ∇(∇·~a)− (∇ · ∇)~a

~a · ((~b×∇)× ~c) = ((~a · ∇)~c) ·~b− (~a ·~b)(∇·~c)
∇·(∇×~a) = 0

∇·(∇f ×∇g) = 0

∇×∇f = ~0
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B. Conservation Laws

In this chapter the derivation of the conservation laws for mass and momentum is given for reasons
of completeness. It can be found in textbooks on fluid mechanics. A clear explanation is for
example given in reference [2].

B.1. Mass Conservation

Let us consider an arbitrary control volumeV fixed in space where fluid is freely flowing with
velocity~u(~x, t) through its bounding surface∂V with unit normal vector̄n(~x) pointing outward as
shown in Figure B.1. The equation for mass conservation, also known as the continuity equation,
expresses that an increase in mass in volumeV can only come from a net mass flow through its
bounding surface∂V

d
dt
(Mass inV ) = Net mass inflow per unit time.

x

y

z

V

∂V

dS

n̄

~u

Figure B.1: A control volumeV fixed in space with fluid freely flowing through its bounding
surface∂V .

Considering that~u · n̄ dS is the volume that flows out of areadS per unit time, we can write for
the net mass flowing through the surface into control volumeV per unit time:

Mass inflow= −

∫∫

∂V

ρ~u · n̄ dS,

whereρ(~x, t) is the mass density of the fluid and the minus sign comes from the fact that we
defined the normal as positive when pointing outward. The integral form of the equation for mass
conservation can now be written as

d
dt

∫∫∫

V

ρ dV +

∫∫

∂V

ρ~u · n̄ dS = 0. (B.1)
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We can use the Divergence Theorem to transform the surface integral into a volume integral,
provided we have a continuously differentiable vector fieldρ~u:

d
dt

∫∫∫

V

ρ dV +

∫∫∫

V

∇·(ρ~u) dV = 0,

which can be written as
∫∫∫

V

(

∂ρ

∂t
+∇·(ρ~u)

)

dV = 0,

where we used the fact that our control volume was fixed in space to shift the time derivative to
the integrand. Because this equation is valid for arbitrarycontrol volumes, the integrand has to be
zero for any point withinV , and we arrive at the differential form of the continuity equation

∂ρ

∂t
+∇·(ρ~u) = 0, (B.2)

which can also be written as

∇·~u = −
1

ρ

Dρ
Dt
. (B.3)

For incompressible flow the mass densityρ of fluid particles is constant and equation (B.2) reduces
to a form without time derivative term

∇·~u = 0. (B.4)

If we now additionally assume irrotational flow∇×~u = ~0, we can write the velocity vector as the
gradient of a scalar functionΦ(~x, t), that is

~u = ∇Φ. (B.5)

Substitution of this expression for the velocity vector into the continuity equation (B.4) results in
the Laplace equation for the unknown velocity potentialΦ:

∇·∇Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0. (B.6)

B.2. Momentum Conservation

Momentum conservation is expressed by Newton’s second law of motion that states that, viewed
from an inertial frame of reference, the time rate of change of the linear momentum of a particle
is proportional to the net force excerted on it:

d
dt
(m~u) = ~F ,

wherem is the mass of the particle and~u its velocity.

Using our fixed control volume from Figure B.1, the equation for momentum conservation ex-
presses that an increase in momentum in volumeV can only come from a net momentum flow
through its surface or from a force excerted on the fluid. The equation for conservation of linear
momentum can be written symbolically as

d
dt
(Momentum inV ) = Net momentum inflow per unit time+ ~F
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For the net momentum flowing through the surface into the control volume per unit time we can
write

Momentum inflow= −

∫∫

∂V

ρ~u(~u · n̄) dS,

where the minus sign comes from the definition of the unit surface normal as positive when point-
ing outward. The momentum equation can now be written in integral form as

d
dt

∫∫∫

V

ρ~u dV +

∫∫

∂V

ρ~u(~u · n̄) dS = ~F , (B.7)

The force ~F acting on the fluid can be split into body forces that act upon the mass inside the
control volume, and forces that act on the surface of the volume. Body forces are of the form

~Fbody =

∫∫∫

V

ρ~fdV, (B.8)

where~f is defined as the force per unit mass. An example of such a body force is the force caused
by gravity. With the gravitational accelleration vector denoted by~g we can write this body force
as

~Fgravity =

∫∫∫

V

ρ~g dV. (B.9)

The forces that act on the surface of the control volume can bedecomposed into a force due to the
static pressurep acting on surface∂V in normal direction

~Fpressure = −

∫∫

∂V

pn̄ dS, (B.10)

and a force due to the viscosity of the fluid

~Fviscous =

∫∫

∂V

~τ dS =

∫∫

∂V

¯̄τ · n̄ dS. (B.11)

Including the forces due to gravity (B.9), pressure (B.10) and viscosity (B.11) in the momentum
conservation equations (B.7) results in

d
dt

∫∫∫

V

ρ~u dV +

∫∫

∂V

ρ~u(~u · n̄) dS =

∫∫∫

V

ρ~g dV −

∫∫

∂V

pn̄ dS +

∫∫

∂V

¯̄τ · n̄ dS. (B.12)

We can use the Divergence Theorem and Gradient Theorem to transform the surface integrals in
equation (B.12) into volume integrals, provided we have a continuously differentiable tensor field
ρ~u~u, pressure fieldp, and stress tensor field̄̄τ , giving

∫∫∫

V

(

∂(ρ~u)

∂t
+∇·(ρ~u~u) +∇p− ρ~g −∇·¯̄τ

)

dV = ~0,

where we used the fact that the control volume is fixed and we are allowed to shift the time deriva-
tive to the integrand. Because this equation is valid for arbitrary control volumes, the integrand
on the left hand side has to balance the right hand side everywhere withinV , and we arrive at the
differential form of the momentum equations:

∂(ρ~u)

∂t
+∇·(ρ~u~u) +∇p− ρ~g −∇·¯̄τ = ~0. (B.13)
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For Newtonian fluids the viscous stresses are considered to be proportional to velocity gradients
through the constitutive relation

¯̄τ = µ

[

∇~u+ (∇~u)T −
2

3
(∇·~u) ¯̄I

]

, (B.14)

where the dynamic viscosity coefficientµ is in general a function of temperature.

This result can be simplified considerably if we assume the flow to be inviscid and incompressible.
Additionally, we write the constant gravitational acceleration vector~g as the gradient of scalar
functionh, the height above the ground,~g = −g∇h, where the minus sign comes from∇h having
the opposite direction of~g. The constant mass density allows us then to combine the pressure and
gravitational terms in equation (B.13) and, using the continuity equation (B.4) for incompressible
flows, we arrive at the differential form of the momentum equations for inviscid, incompressible
flows:

ρ
∂~u

∂t
+ ρ(~u · ∇)~u+∇(p+ ρgh) = ~0. (B.15)

Using one of the vector identities from appendix A, the second term in above equation can be
witten as

(~u · ∇)~u = ∇(
1

2
~u · ~u)− ~u× (∇×~u). (B.16)

Assuming steady flow, the substitution of the vector identity B.16 in the momentum equations B.15
for inviscid, incompressible flow gives

∇

(

1

2
~u · ~u+

p

ρ
+ gh

)

= ~u× (∇×~u),

and taking the inner product with velocity vector~u results in

~u · ∇

(

1

2
~u · ~u+

p

ρ
+ gh

)

= 0,

which gives us the Bernoulli equation for steady, incompressible, inviscid, and rotational flow that
is valid in every point on a streamline through~x0:

1

2
~u · ~u+

p

ρ
+ gh = C(~x0). (B.17)

Let us start again with the momentum equations for unsteady,inviscid, incompressible flow B.15,
and assume an irrotational velocity field∇×~u = ~0. We can now introduce~u = ∇Φ, and with the
use of vector identity B.16 arrive at

∇

(

ρ
∂Φ

∂t
+

1

2
ρ∇Φ · ∇Φ+ p+ ρgh

)

= ~0,

which gives the Bernoulli equation for unsteady, incompressible, potential flow:

∂Φ

∂t
+

1

2
∇Φ · ∇Φ+

p

ρ
+ gh = C(t). (B.18)

B.3. Energy Conservation

The equation for energy conservation is based on the first lawof thermodynamics that states that an
increase in total energy in a volumeV per unit time can only come from the energy added by heat
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per unit time or from the work per unit time done by forces. Using the fixed control volume from
Figure B.1, the equation for energy conservation for fluid flows can be expressed symbolically by

d
dt
(Energy inV ) = Net energy inflow per unit time+ Ḣeat + Ẇork.

LetE(~x, t) be the total specific energy, that is the total energy per unitmass, and lete(~x, t) be the
internal specific energy that comes from molecular motion. The total specific energy is the sum of
the internal specific energy and the kinetic specific energy that is associated with the bulk velocity
~u(~x, t), that is

E = e+
1

2
~u · ~u. (B.19)

The total energy in volumeV is

Energy inV =

∫∫∫

V

ρE dV.

For the net energy flowing through the surface∂V into the control volume per unit time we can
write

Energy inflow= −

∫∫

∂V

ρE(~u · n̄) dS,

where the minus sign comes from the definition of the unit surface normal as positive when point-
ing outward. The expression for energy conservation can nowbe written as

d
dt

∫∫∫

V

ρE dV +

∫∫

∂V

ρE(~u · n̄) dS = Ḣeat + Ẇork. (B.20)

The heat that is added to the volume can be split into body heating that acts on the fluid inside the
volume, and surface heating that acts through thermal conduction and is caused by gradients in the
heat distribution. LetQ̇(~x, t) denote the body heat in Joule per unit volume per unit time, and let
~q be the heat flux vector in Joule per unit area per unit time, then

Body heating =

∫∫∫

V

Q̇ dV, (B.21)

Surface heating = −

∫∫

∂V

~q · n̄ dS. (B.22)

In general, for the work done per unit time by applying a force~f(~x, t) to the fluid moving with
velocity~u(~x, t) we can write

Ẇforce = ~f · ~u

The forces can be split into body forces that act upon the massinside the volume, and forces that
act on the surface of the volume, see Appendix B.2.

An example of a body force is the gravitational force. With the gravitational accelleration vector
denoted by~g we can write the work done per unit time by this body force as

Ẇgravity =

∫∫∫

V

ρ~g · ~u dV. (B.23)
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The forces that act on the surface of the control volume can bedecomposed into a force in normal
direction due to the static pressurep(~x, t) acting on surface∂V and a force due to the viscosity of
the fluid. The work done by the static pressure per unit time is

Ẇpressure = −

∫∫

∂V

p~u · n̄ dS, (B.24)

and for the work done by viscous forces per unit time we have

Ẇviscous =

∫∫

∂V

~τ · ~u dS =

∫∫

∂V

(¯̄τ · ~u) · n̄ dS. (B.25)

Combining all heat and work contributions in the expressionfor energy conservation B.20 results
in the energy equation in integral form:

d
dt

∫∫∫

V

ρE dV +

∫∫

∂V

ρE(~u · n̄) dS = −

∫∫

∂V

p~u · n̄ dS +

∫∫∫

V

ρ~g · ~u dV

+

∫∫∫

V

Q dV −

∫∫

∂V

~q · n̄ dS

+

∫∫

∂V

(¯̄τ · ~u) · n̄ dS. (B.26)

We can use the Divergence Theorem to convert the surface integrals to volume integrals, provided
we have continuously differentiable vector fieldsρE~u, p~u, ~q, and¯̄τ · ~u, and arrive at

∫∫∫

V

∂(ρE)

∂t
dV +

∫∫∫

V

∇·(ρE~u) dV =

∫∫∫

V

∇·(p~u) dV +

∫∫∫

V

ρ~g · ~u dV

+

∫∫∫

V

Q dV −

∫∫∫

V

∇·~q dV

+

∫∫∫

V

∇·(¯̄τ · ~u) dV, (B.27)

where we used the fact that the control volume is fixed and we are allowed to shift the time deriva-
tive to the integrand. Because this equation is valid for arbitrary control volumes, the integrals
have to balance each other everywhere in volumeV and consequently the equation can be written
in differential form:

∂(ρE)

∂t
+∇·(ρE~u) +∇·(p~u)− ρ~g · ~u−Q+∇·~q −∇·(¯̄τ · ~u) = 0. (B.28)

We can rewrite above energy equation in terms of total specific enthalphyH(~x, t) which is defined
as

H = E +
p

ρ
. (B.29)

The substitution of the definition for total specific enthalphy in energy equation B.28 gives a
simpler enthalphy equation that does not explicitly contain the pressure work term:

∂(ρH)

∂t
+∇·(ρH~u) =

∂p

∂t
+ ρ~g · ~u+Q−∇·~q +∇·(¯̄τ · ~u). (B.30)
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Expanding the term on the left hand side of the equation, and making use of the continuity equa-
tion B.2, the non-conservative form of the equation for total enthalphyH is obtained

ρ
DH
Dt

=
∂p

∂t
+ ρ~g · ~u+Q−∇·~q +∇·(¯̄τ · ~u). (B.31)

The energy equation is supplemented with two equations of state and two constitutive relations,
one for stress tensor̄̄τ(~x, t) and one for heat flux vector~q(~x, t). A model for the heat flux vector
is given by Fourier’s law

~q = −κ∇T,

whereκ is the heat conduction coefficient, andT (~x, t) the temperature field.

The constitutive relation for the stress tensor was introduced in the derivation of the momentum
equations in Appendix B.2 and is

¯̄τ = µ

[

∇~u+ (∇~u)T −
2

3
(∇·~u) ¯̄I

]

,

with µ the dynamic viscosity coefficient that is in general a function of temperatureT .

Two equations of state complement the energy equation: one expressing the relation between
pressurep, mass densityρ, and temperatureT , and one expression for the specific internal energy
e. For a calorically perfect gas the two equations of state are

p = ρRT,

with R the specific gas constant which for air is approximatelyR = 287 Joule per kilogram per
Kelvin, and

e = cvT,

with cv the specific heat at constant volume.

Related to these two expressions and the definition of specific enthalpyh = e+ p
ρ is the relation

h = cpT,

with cp the specific heat at constant pressure. The ratio between thetwo specific heats is denoted
by γ =

cp
cv

and is for airγ = 1.4.
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C. Boundary Integral Equation

In an inertial Cartesian coordinate system in which coordinates are denoted by~x = (x, y, z)T, the
Laplace equation for the velocity potential in unsteady, incompressible flow, in domainV ∈ R

3,
can be written as

∇·∇Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (C.1)

Although the Laplace equation has no time-dependent term, the velocity potentialΦ(~x, t) is a
function of space and time. Unsteady boundary conditions will introduce time-dependency in the
solution. In this section, this time-dependency is implicitly assumed. The problem in volumeV
can be reduced to a problem involving only surface integralsby the introduction of a special form
of the Divergence Theorem that relates the volume and surface integrals of an arbitrary tensor
function over a volumeV enclosed by surface∂V with unit normal vector̄n pointing into the
volume:

∫∫

∂V

(Ψ2∇Ψ1 −Ψ1∇Ψ2) · n̄ dS =

∫∫∫

V

(

Ψ1∇
2Ψ2 −Ψ2∇

2Ψ1

)

dV. (C.2)

Equation (C.2) is known as Green’s second identity in which surface∂V is piecewise continuous
and the scalar functionsΨ1 andΨ2 are assumed to be twice continuously differentiable.

Now, let us set for 3D flows

Ψ1 =
1

r
, Ψ2 = Φ, (C.3)

in whichΦ(~xP ) is the velocity potential function in point~xP (see Figure C.1) andr is the distance
from point~xQ on the enclosing surface to an arbitrary fixed point~xP :

~r = ~xP − ~xQ, r = |~r |, where ~xQ ∈ ∂V. (C.4)

Notice that

∇
1

r
=

~r

r3
, and ∇2 1

r
= 0, for r 6= 0. (C.5)

x

y

z

2ǫ
Vǫ

∂Vǫ

V

∂V

~xP

n̄

n̄

Figure C.1: Flow domain with region surrounding~xP ∈ V excluded from the domain of integra-
tion.
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For point ~xP outside flow domainV both Ψ1 andΨ2 satisfy the Laplace equation and equa-
tion (C.2) becomes

∫∫

∂V

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS = 0, ~xP /∈ V. (C.6)

In case point~xP is inside the domain of interestV , a small sphere with radiusǫ is introduced to
exclude volumeVǫ around point~xP from the volume of integration (see Figure C.1). Again, both
Ψ1 andΨ2 satisfy the Laplace equation and equation (C.2) now becomes

∫∫

∂V+∂Vǫ

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS = 0, ~xP ∈ V. (C.7)

Now, let us evaluate the integral over the surface of the sphere∂Vǫ. With equation (C.5) we have
∫∫

∂Vǫ

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS =

∫∫

∂Vǫ

(

Φ
n̄ · ~r

r3
−

1

r
∇Φ · n̄

)

dS. (C.8)

For a sphere with radiusǫ we have∫ dS=4πǫ2. Assuming a continuously differentiable velocity
potentialΦ and lettingǫ → 0, the second term in equation (C.8) vanishes:

∫∫

∂Vǫ

(

−
1

r
∇Φ · n̄

)

dS = −
∂Φ

∂n

∫∫

∂Vǫ

(

1

r

)

dS = 0, (C.9)

while for the first term in equation (C.8) we find
∫∫

∂Vǫ

(

Φ
n̄ · ~r

r3

)

dS = − Φ(~xP )

∫∫

∂Vǫ

(

1

r2

)

dS = −4πΦ(~xP ), (C.10)

where we used for the normal vector on the sphere the expression

n̄ =
~xQ − ~xP
|~xQ − ~xP |

= −
~r

r
. (C.11)

Substitution of this result in equation (C.7) gives an expression for the velocity potentialΦ in an
arbitrary point~xP ∈ V in terms of an integral over the boundaries∂V :

Φ(~xP ) =
1

4π

∫∫

∂V

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS, ~xP ∈ V. (C.12)

The same procedure can be followed for point~xP located on∂V . Now only half a sphere is sur-
rounding~xP , assuming that~xP is not located at a surface-slope discontinuity. In addition, the in-
tersection of the hemisphere with∂V is excluded from the surface of integration (see Figure C.2).
This results in the following integral:

Φ(~xP ) =
1

2π

∫∫

∂V

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS, ~xP ∈ ∂V. (C.13)

In summary, we have found that

1

4π

∫∫

∂V

(

Φ∇
1

r
−

1

r
∇Φ

)

· n̄ dS =







0 ~xP /∈ V,
1
2Φ(~xP ) ~xP ∈ ∂V,
Φ(~xP ) ~xP ∈ V.

(C.14)
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x

y

z

2ǫ

∂Vǫ

V

∂V

~xP

n̄

n̄

Figure C.2: Flow domain with region surrounding~xP ∈ ∂V excluded from the domain of integra-
tion.

Now, consider the situation in Figure C.3 in which we have a collection of non-overlapping sub-
domainsVm, each with a velocity potential functionΦm. Some of the flow domains will have
physical significance, while others are introduced to allowfor certain boundary conditions, or
for their influence on external regions. The boundary separating volumeVm from volumeVk is
denoted bySm,k

Sm,k = ∂Vm ∩ ∂Vk, m 6= k, (C.15)

and normal vector̄nm is defined to point into subdomainVm. The surfaceS of the configuration
and its wake (see Figure C.3) are described by the complete set of inner boundaries:

S = ∪Sm,k. (C.16)

The outer boundaryS0,1 is located either a finite or an infinite distance away from theinner bound-
aries in case of internal or external flows respectively.

x

y

z

V0

V1

V2

V3

V4

V5

S0,1

S1,2

S1,3

S1,4

S3,4

S3,5

n̄1

n̄1

n̄1

n̄1

n̄1

n̄1

n̄2

n̄3

n̄3

n̄3

n̄4

n̄5

Figure C.3: Flow domain composed of non-overlapping volumes Vm and boundariesSm,k that
separate volumeVm from volumeVk.

Summation of all surface integral contributions to the velocity potential in a point~xP ∈ V some-
where in the domain gives:
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Φ(~xP ) =
1

4π

∫∫

S

(

(Φm − Φk)∇
1

r
−

1

r
∇(Φm − Φk)

)

· n̄m dS +

1

4π

∫∫

S0,1

(

Φ1 ∇
1

r
−

1

r
∇Φ1

)

· n̄1 dS, ~xP ∈ V. (C.17)

If outer boundaryS0,1 lies an infinite distance away from the other boundaries, thecontribution to
Φ(~xP ) from the integral in equation (C.17) forS0,1 can be considered to represent the unperturbed
velocity potentialΦ∞(~xP ) in the entire domain, i.e. the velocity potential if no innerboundaries
were present. The integral contributions from the inner boundaries may thus be considered per-
turbation velocity potentials. Of course this is only validif the velocity potential perturbation in
equation (C.17) vanishes at infinity.

If we now define the dipole and source surface singularity strengths to be

µ = − (Φm − Φk, ) and σ = ∇(Φm −Φk) · n̄m, (C.18)

and, using the definition for~r in equation (C.4), introduce the dipole and source perturbation
velocity potentials

ϕµ(~xP ) =
−1

4π

∫∫

S

µ
n̄m · ~r

r3
dS, (C.19)

ϕσ(~xP ) =
−1

4π

∫∫

S

σ
1

r
dS, (C.20)

we can reformulate boundary integral equation (C.17) as

Φ(~xP ) = Φ∞(~xP ) + ϕµ(~xP ) + ϕσ(~xP ), ~xP ∈ V. (C.21)

The perturbation velocity potential functions as defined inequation (C.19) and equation (C.20)
vanish towards infinity and satisfy the far-field condition mentioned. The integrals have a singular
integrand which results in a jump in velocity potential acrossS± of size−µ:

ϕ(~xP → S±) = ϕp
σ(~xP ∈ S) + ϕp

µ(~xP ∈ S) ∓
1

2
µ(~xP ∈ S), (C.22)

whereS+ andS− denote the sides ofSm,k when approached from volumeVm or from volumeVk
respectively. Theϕp(~xP ∈ S) terms are to be interpreted as Cauchy principal value or Hadamard
finite part integrals in which a small region around the singular point is excluded from the surface
of integration.

52 ECN-E--11-071


