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Abstract

The ongoing trend towards larger wind turbines intensifies the demand for more physically
realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure
loadings on the rotor blades better than current engineering models. In this report the
mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code
is described. This wind turbine simulation code is designated ROTORFLOW. In this method the
fluid dynamics problem is solved through a boundary integral equation which reduces the
problem to the surface of the configuration. The derivation of the integral equations is described
as well as the assumptions made to arrive at them starting with the full Navier-Stokes equations.
The basic numerical aspects in the solution method are described and a verification study is
performed to confirm the validity of the implementation. Example simulations with the code
show the flow solutions for a stationary wing and for a rotating wing in yawed conditions.

With the ROTORFLOW code developed in this project it is possible to simulate the unsteady flow
around wind turbine rotors in yawed conditions and obtain detailed pressure distributions, and
thus blade loadings, at the surface of the blades. General rotor blade geometries can be handled,
opening the way to the detailed flow analysis of winglets, partial span flaps, swept blade tips,
etc. The ROTORFLOW solver only requires a description of the rotor surface which keeps
simulation preparation time short, and makes it feasible to use the solver in the design iteration
process.
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Nomenclature

Dimensions
[I] length
[m] mass
[t] time

Roman symbols

<" 9

Q
< O

[1t72]
[1]

gravitational acceleration
height, characteristic panel length

[mI~'t=2] pressure

[1%]
[1°]
[l]

[1%]

surface
volume
surface boundary
volume boundary

Greek symbols

AT T 6

[2t71]
[2t71]
[2t71]
[mi13]
[1t71]

velocity potential

velocity perturbation potential
dipole strength

mass density

source strength

Tensors, matrices and vectors

NS WQ

8 LN

[1t72]

gravitational acceleration vector
unit surface normal vector

[mI~1t=2] viscous stress tensor

unit tangential vector
velocity vector
coordinate vector



Subscripts, superscripts and accents

onset flow value

value in surface normal direction
value at the surface

transpose operator

value at the trailing edge

value at the wake surface

value from dipole singularity
value from source singularity
value at fluid side

value at internal side

vector
vector of unit length
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1. Introduction

The ongoing trend in wind turbine design is towards largebites, leading to increasing in-
vestment costs and related concerns regarding risk mdigaf he increase in size also leads to
relatively more flexible structures that are more susciptibunsteady load occurrences. An im-
portant aspect of wind turbine rotor aerodynamics is thetiaht unsteady character of the flow
caused by variations in wind speed and direction, irregultational speed, blade pitch actions,
rotor yaw misalignment, blade deformations and the dynamécacter of the wake behind the ro-
tor, to name a few. All this increases the need for wind tweld@irrodynamics simulation tools that
can predict the effects of unsteady flow on the pressurergaath the wind turbine rotor blades.
The application of such a simulation tool in an engineeringirenment requires computation
times and problem turnover times to be reasonable.

In current engineering practice the wind turbine blade ilbguds estimated using experimentally
determined 2D airfoil characteristics for steady flow in ddmation with approximations for the
local 'effective’ onset velocity field and approximating deds to compensate for unaccounted
unsteady and 3D effects. This 2D approach is computatipwally fast but becomes more and
more questionable with increasing 3D flow and geometry cheriatics. Example situations in
which 3D modelling capabilities become indispensableuidel cases with blade rotation, blade
pitch, blade sweep, rotor yaw misalignment, blade prebesiuglets, local aerodynamic control
surfaces, etc.

One approach to account for the unsteady effects and the-tlmeensional character of the flow
problem is the deployment of solvers for the 3D unsteady &feStokes equations which can in
principle generate solutions for general 3D unsteady visdmws. A drawback of this approach
however is the large effort that is required to setup a sitiaraand the excessive computational
time to obtain a solution.

Inviscid flow

Figure 1.1: Domain decomposition into an inviscid flow regand a viscous flow region.

The approach taken here is to combine the advantages of @&wovapproaches and develop
a solution method capable of providing detailed unsteadyw®m turbine rotor flow solutions

while avoiding excessive computational costs. To this dwdffiow domain is decomposed into
two subdomains: an outer region in which the flow is considléeneompressible and inviscid
and is formulated in terms of a potential flow solver, and ameinregion where the effects of
viscosity will be taken into account by an integral boundiayer solver (see Van Garrel [8]) as
sketched in Figure 1.1. The two domains will be coupled thhoa so-called viscous-inviscid
interaction procedure. Both the development of the boynkeer solver (Ozdemir and Van den
Boogaard [13]) and the viscous-inviscid interaction prhee (Bijleveld and Veldman [4]) are
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currently underway at ECN.

In this report the development of the potential flow solverifcompressible, inviscid 3D flows is
discussed. The code under development will be referred RoagRrFLOW.

The mathematical theory that forms the basis of flow field deson for the incompressible
inviscid flow in the outer region of the® oRFLOW code is described in Chapter 2.

In Chapter 3 some specific topics in the discretization ofitlaghematical model will be discussed.

Some basic verification tests are reported in Chapter 4 forgrd types of a tri-axial ellipsoid
and the order of convergence will be established for thisrury.

Finally, in Chapter 5 some applications of the RORFLOW code for lifting bodies are shown.
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2. Potential Flow Model

The mathematical model for the three-dimensional unstélagy around wind turbine rotors is

considered. The flow is assumed to be incompressible andféwtseof viscosity are assumed to
be confined to thin boundary layer and wake regions due toitfedperational Reynolds num-

bers. Outside these regions the flow is assumed to be ion#hti The effects of heat conduction
are considered negligible. The main area of interest li¢gkardetailed prediction of the unsteady
pressure loading on the wind turbine rotor blades as oecwuduring normal operation. An ac-
curate representation of the wake behind the rotor is oféstdor its influence on the flowfield

around the upstream rotor blades.

Above observations and assumptions make it justifiable tdeithe flow around wind turbine
rotors with the fluid dynamics equations for unsteady paefibw. These equations will be cast
in a boundary integral equation form.

2.1. Introduction

A continuously differentiable flowfield around an arbitrdrgdy in 3D space can be described in
terms of velocity vectofi(Z) or equivalently in terms of sourcee(Z) and vorticityd(Z) distribu-
tions throughout the volume plus an irrotational and sddoonset flowii, (Z) as depicted in
Figure 2.1.

U = Upo + Ug + Uy

-~ =g [[f FFdV

o= & [ff Z5av

Figure 2.1: Flowfield representation in terms of velocitytee field (Z) or in terms of sources
o(#) and vorticesv ().

An approximation to the volumetric source and vorticitytdigitions is to restrict them to the body
and wake surfaces as indicated in Figure 2.2 which will leaditergence free and irrotational

flow everywhere except across these surfaces. The resbbimgdary integral equations can be
solved with a so called panel method in which the surface efctimfiguration is covered with

panels where boundary conditions are imposed in selectatspo
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Figure 2.2: Flowfield approximation.

2.2. Governing Equations

General fluid flows are described by the Navier-Stokes egusithat express the physical princi-
ples of conservation of mass, momentum, and energy. Fomapai volumeV € R3 at timet,
the equations for mass, momentum, and energy conservatitifférential form are respectively

dp L
Fn + V-(pi) = 0, (2.1)
d(pu L
% + V-(pui) + Vp — pg — V-T =0, (2.2)
d(pE . _
(gt ) L (pE@) + V(i) — pjeii— O+ VoG — Vo7 ) =0, 2.3)

with p(Z,t) the mass densityj(Z, ¢) the fluid velocity, pressurg(Z, t), g the gravitational accel-
eration vector, and(Z, t) the viscous stress tensor. The total energy per unit masnisted by
E(Z,t) and the ternQ(Z, t) in the energy equation (2.3) is the heating that works on the ¥o-
lume directly, for example by radiation, and has dimensaergy per unit volume per unit time’.
Heating due to thermal conduction is accounted fort by tha teith heat flux vectog(z, ¢) that
has dimension ’energy per unit area per unit time’.

To close the system of equations, the Navier-Stokes eaqsatice supplemented by two equations
of state and two constitutive relations. The latter modeltlscous stress tensé(z, t) and the
heat flux vectog(Z, t) in terms of available variables. See Appendix B for moreitieta

We consider the fluid dynamics equations for wind turbindiapfions where the flow is assumed
to be incompressible and the effects of heating are coreideegligible. Fluid particle mass

density is considered constant. The effects of viscosigyamsumed to be negligible due to the
high operational Reynolds numbers. These consideratiaie it feasible to reduce the set of
equations. For unsteady incompressible flow, the mass o@is® equation reduces to

Vi = 0. (2.4)

Note that although the equation does not have an explicé tarivative term, unsteady boundary

conditions will introduce time dependency in the solutidiime equations expressing momentum
conservation for unsteady, incompressible, inviscid floges:

ou

ot

whereh is the distance above the ground.

+ p(@- V)@ + V(p+ pgh) =0, (2.5)

A significant reduction in complexity can be achieved if iassumed that rotational flow is con-
fined to infinitesimal thin boundary layer and wake regiomsisarrotational everywhere else, that
is Vxa = 0. This allows us to write the velocity vector fielf(Z, t) as the gradient of a scalar
velocity potential functionb (', ¢):

u=Vao. (2.6)

10 ECN-E--11-071



Substitution of the velocity potential gradient (2.6) irethontinuity equation (2.4) gives the
Laplace equation for the velocity potential in dom&in

V-Vo = 0. 2.7)

Substituting the gradient of the velocity potential (2.6)the momentum conservation equa-
tions (2.5) results in the Bernoulli equation for unsteadieptial flow:

0% 1 p
Br T aVe Ve gh =C0). (2.8)

2.3. Boundary Integral Equation

It is assumed that flow domain domdihcan be decomposed into a set of non-overlapping vol-
umesV,,, with boundarie$)V,,, (see Figure 2.3). Let;,, ;. be the part of the boundary that the two
volumesV,,, andV}, have in common:

SmJg =9IV, N IOV;, m # k.

The surfaceS of the configuration and its wake is now described by the cetepbet of inner
boundaries:

S =USnk-

It can be shown (Appendix C) that the solution of the Laplagaation (2.7) for the velocity
potential ®(Z,,t) in a pointz, in volumeV can be formulated in terms of a reference velocity
potential® . (-, t) and perturbation velocity potential contributiops(z, t) andy, (5, t) from
dipole singularity distributiong.(z,,¢) and source singularity distributionsz,, ¢) on the inner
boundaries repectively, that is

¢ = D + v, + @o, (2.9)
where® (75, t) is the unperturbed velocity potential in poift, the velocity potential if no inner

boundaries were present. However, the unperturbed welpaitential ., could also include
contributions from a designated set of source and dipolguganities in the nearby flow field.

The perturbation velocity potentials induced in paiptby the dipole and source distributions on
surfaceS are defined by

. ~1 T - T
ouldnt) = - [ [ w2 as (2.10)
S
(1 t)—_l// Las (2.11)
Po\Tp, - A7 0-7" ) :
S

wheren,,, (#,,t) is the unit normal vector i, € 0V, ; that is pointing into volumé/,,. The
vectorr’'is defined as the vector from a poifif on the surface to evaluation poifit, whereas its
length is denoted by, that is,

77: fp - xQ, r = ‘7‘ " fOf fQ < Sm,k (212)

For problems where the evaluation poifit and the boundan,,, ;. are moving relative to each
other, we have’ = 7(t).

ECN-E--11-071 11



Figure 2.3: The flow domai¥ € R? is the union of the non-overlapping volumg&sand inner
boundaries)V,, ;. that separate volumg,, from volumeV;,. Unit normal vector,,, is defined to
point into volumeV,,,.

The dipole strengthu(,, t) and the source strength(z,, t) in point 2, at the surface, are related
to the velocity potential value®,, (%, t) and®x(,, t) on both sides of the surface by

N(fQ’t) = _(@m - (I)k:)a (213)
(o, ) = V(Byy — D) - i (2.14)

As shown in Appendix C, the integral for the dipole singujadistribution causes a jump in the
velocity potential of strength (5, t) across the surface:

B} ; B} 1
(T = S%,1) = 0@, 1) + @h(Test) F 5 1(T1), (2.15)

whereS* andS~— denote the sides &, , when approached from volunig, or from volumeV,
respectively. The two?(z» € S) terms on the right hand side of equation (2.15) are to be-inter
preted as Cauchy Principal Value or Finite Part integraks ¢lve complete set of inner surfaces,
with an infinitesimal region around the singular point exield from the surface of integration.

2.4. Boundary Conditions

The goal is now to find a solution for the Laplace equation)(®¥ the potential fieldd(z;, )
as formulated in terms of reference potential fiéld (%, ¢t) plus source and dipole perturbation
potential fieldsp, (Z»,t) andy, (2, t), subject to the appropriate boundary conditions.

For surfaces of thick bodies we will employ internal Diriehboundary conditions as introduced
by Morino and Kuo [12]. This formulation assumes that we ary iterested in the flow field on
one side of the surface, and that the volume at the other éitle surface is of no interest and can
be prescribed. This excludes the use of internal Dirichtetridary conditions for the flow over
infinitesimal thin surfaces.

12 ECN-E--11-071



2.4.1. Body Surface

For thick bodies, the internal Dirichlet formulation wilkkemployed where it is assumed that only
the solution in the volume on one side of the surface is ofréste LetS™ denote the side of
surfaceS,, . in volumeV;, where we want to obtain a solution of the flow problem, andslet
denote the side of the surfacg, ;. in volume V}, that is considered non-physical and exhibits a
fictitious flow.

The boundary condition at surface sifié is such that the flow velocity at the surface in normal
direction, is equal to normal component of the surface lats (-, t), plus a specified velocity
vn(Zp, t) in normal direction:

V®,, - figy = s - Tn + Up, T — ST (2.16)

The normal velocity distribution can be used for exampldnuugate boundary layer displacement
thickness effects or for the simulation of inflow through atgn slot. The local surface velocity

s (Zp,t) may be composed of solid body rotation, surface translasorface rate of deformation

and so on.

Suppose the velocity potential in the fictitious flow domdifyss known in advance,
Dy, = Op(2p, 1), Zp € Vi, (2.17)

and let
ﬁk(fp,t) =V, Tp € Vi (2.18)

For pointz, in regionV;, approaching the surfacg™, the boundary integral equation (2.9) now
reads:
@M(fp’t) + (pg(fp,t) == (I)k(fp’t) - @Oo(fp,t), fp — S_. (219)

Substitution of the boundary condition (2.16)%t and the known velocity potential in volume
Vi (2.17) in the definition of the source strength (2.14), geegxpression for the source strength
in terms of known quantities:

0(Tg,t) = (s — Ug) - om + U,  Tg €S. (2.20)

The boundary integral equation (2.19)at— S~ now gives an expression involving the unknown
dipole strengthu(z,, t) as a function of known quantities.

Taking the surface gradient of the dipole strength (2.1@gus for the tangential component of
the velocity at the surface side of interest
Vil (T t) = Vs®y — Vep, T — ST (2.22)

Combining the normal velocity from the boundary conditi@nl@), the expression for the source
strength in equation (2.20), and the tangential velocitynfrequation (2.21) gives an expression
for the velocity at the surface in the inertial coordinatstsyn:

U(Tp,t) = Uy + 0Ny — Vsit, & — ST, (2.22)

Equation (2.22) states that the velocity at the surfacedid#erest is composed of a known base
flowfield @, and a perturbation flowfield due to the source and dipole &anigy distributions.

Notice that the velocity potential fielfl,, and consequently velocity field,, still has to be defined
in the non-physical domains. This gives some freedom to tlasehoice on the properties that
the resulting set of equations will have. A choice that iseeted to give small numerical errors is

ECN-E--11-071 13



one that results in smooth and weak source and dipole distits. Here it is decided to set the
fictitious flowfield equal to the onset flowfield as was introgldidy Morino and Kuo [12], that is
d, = b, andi, = . Assuming a known surface velocifis and normal velocity,,, this
gives the following set of equations to determine the vé&jodistribution at the surface:

o = (g — Ux) - 0+ vy7,
SOM = —Po, fP — Siv (223)
ﬁ(fp,t) — ﬁOO + O’ﬁ - Vsll, fp — S+.

2.4.2. Wake Surface

In the previous section we derived a set of equations to mhéterthe dipole strength distribution
the solid body surface. In this section the conditions ferwake surface will be determined. At
the trailing edge of a lifting body, the point where the waitti leaves the surface (see Figures 2.1
and 2.2), a linear Kutta condition will be imposed that resirl a smooth flow with finite velocity
at that point. This condition was used by Morino and Kuo [12d @quates the dipole strength at
the start of the wake equal to the jump in dipole strengthssacthe trailing edge:

tawe = [Plie = [z (2.24)

IU/wte
Hw
)%

Figure 2.4: Trailing edge Kutta condition.

For the evolution of the wake we will make use of the theorefirdabmholtz and Kelvin for vortic-
ity dynamics (see Batchelor [3], Cottet and KoumoutsakdsS&affman [14]). In incompressible
flows the inviscid evolution of the vorticity field can be oioted by applying the curl operator
to the momentum conservation equation 2.2. After some nuéatipn, the resulting Lagrangian
description is

D&

or
A similar relationship is valid for material line elemertsand can be obtained by replacid@gn
above equation withi. We can thus conclude that in incompressible inviscid flovestex lines
behave as material line elements. Kelvin’s circulatiorotien for incompressible inviscid flows
reads

- & Vi (2.25)

DI

oF =
where circulationl” is defined by a surface integral of vorticity over a crossisachf a vortex
tube or recast into a contour integral around the vortex wilethe help of Stokes’ theorem (see

Appendix A)
F://J}-ndS:/ﬁ-Tds, (2.27)
s

oS

with 7 the unit normal vector to the cross section surfaceand7 the unit vector tangential to
the contourdS. From above equations it can be concluded that in incomiptessaviscid flows

0, (2.26)

14 ECN-E--11-071



a tube of vorticity preserves its identity when moving witie fluid. In terms of the evolution of
wake element positiorX,, and wake element dipole strength the corresponding equations are

—

de — oy —

T = u, X/J(to) = .’Ete(t()), (228)
and 5

SL=0 pralto) = puy (to). (2.29)

wheret is the time of wake element creation.

2.5. Aerodynamic Forces

The total force and moment with respect to the coordinateesysrigin are determined by inte-
grating the pressure force over the surface of the configurésee Figure 2.5):

F(t) = /S/pﬁ ds, (2.30)
M(t) = —é/pn x 7 dS, (2.31)

wherer is the position vector to the surface, apdhe pressure that can be obtained from the
Bernoulli equation (2.8).

J

S

Figure 2.5: Infinitesimal surface contribution to the tdtakte and moment acting on the configu-
ration.
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3. Numerical Approach

The continuous mathematical description of the flow probfermwind turbine applications will
be discretized such that it is possible to numerically detee the solution with ganel method

To this end we will introduce approximations and discrdiiwes for the geometry, the singular
surface integral equations, and the boundary conditiohs.geometry will be described in terms
of bodies and wakes that consist of patches of structuretogitls, the so called 'panels’ in the
method. The quadrilateral panels will be described by ad#li geometry where possible and by
a planar surface elsewhere. Each panel on a body or wake igadisBigned a constant strength
dipole distribution and for body patches the panels are adsigned a constant strength source
distribution. Just below the surface of the body panel miaigcso calledcollocation pointsare
located where the boundary conditions will be fulfilled.

3.1. Geometry

The surface of the configuration is subdivided into one orexp@atches which are discretized in a
structured grid fashion. The grid cells on the surface otthefiguration are in the boundary inte-
gral discretization called 'panels’, hence the name parethod for this type of solution method.
An example rotor blade surface subdivided into multiplecpas, each patch consisting of an array
of panels, is shown in Figure 3.1.

2SN
R
o’.““‘\.-\“‘\\\\‘,\

Figure 3.1: Rotor blade surface subdvided into multipleipes.
Each patch consist of an array of nodes and; direction (see Figure 3.2b) which determine the

corner nodes of the panels. The vector normal to the surfadefined to be in the direction of the
right-hand cross produét = i x j as is indicated in Figure 3.2a.

3.2. Panel Method

The boundary integral equations in (2.23) are discretizea law-order panel method (see Hoeij-
makers [9], Katz and Plotkin [10]). In this approach eachgbaarries a constant strength source
o and/or dipolen singularity distribution. Boundary conditions are enfemtan each panel col-

17



(a) The normal vectat is assumed to point into the flow (b) Patch node and panel ordering in a structured
domain and is deduced from the right-hand vector cross grid usings andj directions. Here the normal
product of thei and; directions:n =i x j vector points out of the paper.

Figure 3.2: Node ordering and panel normal vectors in a patch

location pointZ;, located just below the panel’s surface midpoint. The tasulkset of discrete
equations for theé = 1.. NV collocation points is

J J

whereA;; andB;; are so-called aerodynamic influence coefficients defined by

Ajj = s, (3.2)
By = / / as, (3.3)

in which
F=%—&, r=IF, and Z, €S, (3.4)

3.2.1. Dipole Velocity Potential

The velocity potential induced at poiit by a panel with surfacé; and dipole distribution. is

given by
. -1 n-r
ou@r) = [ [ n as. (3.5)
Sj
where
F=ap — Iy, r=]|r|, and I, €S;. (3.6)

The usual approach taken in low-order panel methods is toaulat approximation for the
panel geometry for which analytical results exists for titegral in equation (3.5) (see Katz and

18 ECN-E--11-071



Plotkin [10]). Flat panels, however, lead to gaps betweerptinels in the surface approximation,
that grow larger with increasing surface twist. Especifdlypanels in a highly deformed wake
surface this flat panel approximation is inadequate. Theogh taken here is to use a bilinear
representation for the panel geometry (see Figure 3.3)hndiies a better surface approximation

and avoids gaps altogether.

z

)T<y

T

Figure 3.3: A bilinear quadrilateral panel.

For a unit strength dipole distribution: (= 1) the integral in equation (3.5) is equal to the solid
angle and can be determined by the projection of the warpeel pam a sphere with unit radius
and the evaluation point. as its center (see Figure 3.4). The solid angle is then tielratween
the projected panel area and the surface area of the sphereus&\the fact that the area of a
guadrilateral on a sphere with unit radius is equal to the sfithe included angles minsr:

4

(3.7)

Figure 3.4: The solid angle is the ratio between the areaegbtbjected panel and the surface area
of the sphere with the evaluation point as its center. Tha af¢he projected quadrilateral can be

determined from its included anglgs.

3.2.2. Source Velocity Potential

The velocity potential induced by a panel with surféteand source distributionr in point 2 is

given by
oo(@) = —2 //al ds. 3.8)
4 r
S

ECN-E--11-071 19
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For the exact evaluation of this integral for constant sewtcengths on each panel the reader is
referred to the analytical formula in Katz and Plotkin [10].

3.2.3. Dipole Surface Gradient Velocity

To obtain the total velocityii at the boundary of the configuration, one of the components in
equation (2.22) that has to be determined is the surfaceegitanf the dipole strengtR; .. This

is accomplished with the help of with Gaul3’ Theorem (see AdpeA), giving an expression for
the average dipole surface gradient inside conttfi{see Figure 3.5):

1
Vs = g/;wds,

as

(3.9)

wherev is the unit outward vector normal to the contour and tangémd the surface. The
contourds is defined by the collocation points of four neighboring pares an approximation,

the perturbation velocity in the grid node due to the dipdkribution is assigned this average
surface gradient.

Figure 3.5: Definitions used in the contour integral to deiae the surface perturbation velocity
in a grid node due to a dipole distribution.

ECN-E--11-071



4. \Verification

In this chapter the results of the convergence tests on gusa@ll with semi-axed, 2,1 are re-
ported. For tri-axial ellipsoids analytical solutions ®xi This makes it possible to verify the
implemented panel method for correctness of system of egqusétup, the solution of the system
by a linear equation solver, and the application of posgssitig steps necessary to obtain the sur-
face velocity distribution. The verification tests are pemied for a single patch grid that exhibits
two grid poles, and a six patch grid that does not possesspsaltl edges. It is shown that for the
tri-axial ellipsoid the rate of convergence for the peraititn potential and the pressure coefficient
surface distributions are up to ord@(h?), whereh is a characteristic panel length.

4.1. Analytical Solution

For ellipsoidal bodies in potential flow analytical solutsexist (see Durand [1], Lamb [11]). If
we define the function) (%) as

= (3 (@) (- =

a &

the surface of an ellipsoid with semi-axesb, c is described by)(Z.) = 0. The perturbation
potential on the surface of this ellipsoid for a general Ofis®Y iy, = (oo, Voo, Wao ), IS given

by

~ o

(,O(Cl?e) = UooTe 0 + Voo Ve 50 + Weo Ze 70 5 (42)
Q) 0

where

abe
(a® + X)y/(@® + ) + M) (2 + A)

/
B T abce
Bo {O dA, (4.49)
/

), (4.3)

(b2 + X)y/ (a2 + A)(B2 + A) (2 + \)

abce

(2 4+ X/ (@ + N2+ N)(2 + ) dA (4.5)

Above integrals are regular and can be numerically evadugiteen a specific choice for semi-axes
a, b, c. In the current study, the integrals were integrated witladaptive Simpson’s quadrature
rule. For the total potential on the surface of the ellipss&lcan write

S L - 2u 2v 2w
O(Te) = Uso - Te + @(Te) = 5 _O;Oxe + 5 _O;Oye + 5 —0700 Ze. (4.6)

The velocity vector on the surface of the ellipsoid can nowléermined from the surface gradient
of the total potential (4.6).
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4.2. Geometric Convergence

First the convergence of the discretised geometry towdrelexact ellipsoidal surface is inves-
tigated. The investigated geometric norm is based on tharntis between the panel mid points
Z., and the pointg’, on the surface of the ellipsoid. The surface is discretized single-domain
grid with poles along the x-axis as shown in Figure 4.2a. Téeex coordinates are obtained
by scaling a sphere with a cosine distribution in x-directémd an equidistant distribution in cir-
cumferential direction. Ann x m panelling was used for the geometric convergence stud, wit
m = 8,16,32,...,1024. The pointsz, are obtained by projecting the collocation poifitsalong
the normal vectofi,. onto the surface.

The discrete versions of the error norms are defined by

L) == 3 foil @.7)
i=1

Lo 1/2
Lao(z) = <E Z |96z|2> ) (4.8)
i=1

Loo(z) = max |z;], (4.9)
i=1,n
where|z;| is the absolute value of the difference between exact ancbrippated values in case
of scalar quantities, and the length of the vector diffeesnia case of vectorial quantities.

The variation of the error norms with—! is shown in Figure 4.1, wherke = N3 is a charac-
teristic panel length and/ the total number of panels. As can be seen, the err@{ig) in the
geometric norms as expected. It should be noted that thediaegrors were invariably for panels
near the poles in the grid. This gives an indication that facpcal purposes we would have to
refine the mesh in these regions of large surface curvatuigtédn a more evenly distributed error.
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Figure 4.1: Geometric convergence of distance betweenl paidepoints and the surface of an
ellipsoid with semi-axed, 2,1 as a function oh, !, whereh is a characteristic panel length.
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(a) Single patch32 x 32 panelling.

(b) Six patches]6 x 16 x 16 panelling.

Figure 4.2: Panellings for a spheroid with semi-axe 1.
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4.3. \Velocity Potential Convergence

In the panel method that is implemented, the perturbatiderpial in the collocation points of the
panels is obtained using a direct solver for the system oétimps. The perturbation potential
thus obtained, is compared to the analytical solution imibiats projected in normal direction at
the exact ellipsoid surface. For this study two panellingswsed, a single patch panelling and
a six patch panelling, of which example grids are shown irufdgt.2. The six patch ellipsoid
was introduced to see if the behaviour in the grid poles okthgle patch configuration could be

avoided.

4.3.1. Single Patch Grid

In Figure 4.3, the error in the velocity potential is showmdignction of characteristic panel length
h for the single patch grid. As can be seen, the error i©@#2) in the velocity potential for this
panelling. The largest errors appear near the poles of tewghnich in this case coincide with the
areas of largest surface curvature, as is shown in Figudesndl 4.5. In case the stagnation points
coincide with the poles of the grid, the largest errors ce@isewhere on the surface as can be

seen in Figure 4.6.
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Figure 4.3: Error norms in perturbation potential as a fiamcof 4!, whereh is a characteristic
panel length, for onset flows along the three coordinate aikasingle patch grid.
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Figure 4.4: Perturbation potential error distribution &single patcto4 x 64 panel ellipsoid and
an onset flow in z-direction. The largest errors appear riespoles of the grid.

(b) Closeup of the pole region.
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Figure 4.5: Perturbation potential error distribution éosingle patclt4 x 64 panel ellipsoid and
an onset flow in z-direction. A smooth potential error disition across the patch edges is shown.
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Figure 4.6: Perturbation potential error distribution &osingle patclt4 x 64 panel ellipsoid and
an onset flow in x-direction. The largest errors occur oets$ite poles of the grid.
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4.3.2. Six Patch Grid

In Figure 4.7, the variation of the error in the velocity pdtal is shown as function of charac-
teristic panel sizeé: for the six patch grid. As can be seen, the error i€¢f?) in the velocity
potential for this panelling. The largest errors appear ae@as of large surface curvature, as is

shown in Figures 4.8a and 4.8b.
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Figure 4.7: Error norms in perturbation potential as a fiamcof »~!, whereh is a characteristic
panel length, for onset flows along the three coordinate aikasix patch grid.
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(a) Perturbation potential error.

(b) Closeup of a region of large curvature.
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8: Perturbation potential error distribution &six patch32 x 32 x 32 panel ellipsoid

and an onset flow in z-direction.

Figure 4.
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4.4. Presssure Coefficient Convergence

The pressure coefficients are obtained, via the Bernoullagon (2.8), from the velocities at the
surface. In turn, these velocities are determined in theb\ggitices involving a line integral of the
perturbation potential through the surrounding collamagoints as expressed in equation (3.2.3).
At the edges of the grid the velocities are obtained usingtiential information of the abutting
patch. Two types of panellings are used, one in which the géagris described by a single patch
and one in which six patches are used (see Figure 4.2).

4.4.1. Single Patch Grid

As can be seen in Figure 4.9 the-LL,- and L., error norms in the pressure coefficient for onset
flows along all three coordinate axes show a rate of errorctémuof orderO(h?). It also shows

that the largest errors appear for an onset flow in z-diractio
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Figure 4.9: Error norms in pressure coefficient as a funotibh—!, whereh is a characteristic
panel length, for onset flows along the three coordinate akasingle patch grid.

In Figure 4.10, the pressure coefficient error distribut®plotted for an onset flow in z-direction.
Because the potential already showed the highest erroregitaid the poles of the grid (see Fig-
ure 4.4), it is of no surprise that the pressure coefficiemrés highest in these poles also.
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Figure 4.10: Pressure coefficient error distribution férdax< 64 panel ellipsoid and an onset flow
in z-direction. The largest errors appear in the poles ofjtick
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4.42. Six Patch Grid

In Figure 4.11, the L-, L,- and L, error norms in the pressure coefficient for onset flows along
all three coordinate axes are shown for an ellipsoid digeretwith a six patch grid. The error is
shown to be of orde©(h?). Notice that the error norms for the six patch grid show a gimo

convergence behavior than the single patch in Figure 4.9.

1

1
0)—— ,0)——
x 0,1, 0)--x-- 0,1, 0)---x--
1)-%-o- . (0,0, 1)-%--
0.1 0.1
o) X )
o o.o1 S o.o1
i i
0. 001 0. 001
0. 0001 0. 0001
1 10 100 1 10 100
Rl Rl
(a) Li-norm. (b) La-norm.
10
1,0,0)——
0,1, 0)--x--
s 0,0, 1)
1
)
o o1
i
0.01
0.001
1 10 100
h—l
() Loo-norm.

Figure 4.11: Error norms in pressure coefficient as a funatiocharacteristic panel length for
onset flows along the three coordinate axes of an ellipsaidtoacted from six patches.

In Figure 4.12 the pressure coefficient error distribut®plotted for an onset flow in z-direction.
The largest errors occur in regions of large curvature whiegemesh is relatively coarse. Note
that the pressure coefficient distribution itself has higihtgative values in the region of highest
curvature (see Figure 4.13) at this onset flow condition.
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Figure 4.12: Pressure coefficient error distribution foixgpatch32 x 32 x 32 panel ellipsoid and
an onset flow in z-direction.
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Figure 4.13: Pressure coefficient distribution for a sixcha2 x 32 x 32 panel ellipsoid and
an onset flow in z-direction. Note that the minimum valuesrasehed in the region of highest
curvature.

ECN-E--11-071

34



5. Application

The current code, designatedbRorRFLOW, can be applied to compute inviscid, incompressible
flows around arbitrary 3D lifting and non-lifting bodies iotating and translating motion. It is
unfortunate that for lifting wings in 3D flow no exact anabgl testcases exist like those reported
in Chapter 4 for the non-lifting tri-axial ellipsoid. The Wosolution for a wing of large aspect ratio
with an elliptic planform however can be regarded quasi tivnensional in its center section. This
enables us to compare the pressure distribution at thaigrosiith a well established 2D airfoil
analysis code for steady flow.

5.1. Lifting wing in steady flow

From a modified NACA 0018 airfoil a wing with an elliptic plasvin was constructed. The span of
the elliptic wing was 200 and the root chord was set to 1, giein aspect ratio of over 254. For this
wing the flow at 5 degrees angle-of-attack was simulated lamdédctional pressure distribution at
half span position was extracted. For the same airfoil sedtie inviscid pressure distribution at
the wing’s effective angle-of-attack of 4.961 degrees vaasputed with the 2D higher order panel
code XFOIL from Drela [6]. As shown in Figure 5.1 the XFOIL atitt ROTORFLOW pressure
distributions are comparable.

2 ! ! ! !
s ‘ CUXFOIL =]
ROTORFLOW -------
S A . NG e i
G 0.5 [T e .
O g T -
0.5 o
1 | | | |
0 0.2 0.4 0.6 0.8 1
XIC

Figure 5.1: Inviscid flow pressure distributions for anaiirfit 5 degrees angle-of-attack.

5.2. Rotating wing in unsteady flow

As a demonstration of the capabilities of the current coddltw solution for a single blade rotor
configuration undeB0 degrees of yaw was computed where an untwisted elliptic wiag used
as blade. For the prescription of the motion of the blade ang#y manipulation approach like
the one in the AWSM code [7] was used.
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Figure 5.2: Unsteady flow for a single blade rotor at 30 degyesv.
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Notice that, due to the lack of blade twist in this blade, tiveer airfoil sections experience a higher
local angle-of-attack and consequently have a higher@ugiak near the nose of the airfoil.
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A. Mathematical Compendium

This chapter contains a collection of some useful mathealatbrmulas. In index notation for-
mulas summation over repeated indices is assumed.

Divergence Theorem: The Divergence Theorem is Gaul3’ theorem for a vector fundfiand
relates the volume and surface integrals of the vector frel volumeV enclosed by the

surfacedV by:
///(V.E) dV://H-nds.
|4 oV

Gaul¥’ Theorem: Gaufd’ theorem gives a relation between the volume and suifdegrals of a
continuously differentiable (i.eC! functions with continuous derivative) arbitrary tensor
function T;; over a volumeV enclosed by piecewise smooth boundafy with outward
unit normal vector. The tensofl’;;, may be a scalar, vector or tensor function of any rank.
In index notation Gauf3’ theorem reads:

J[[ o av = [[ nityas.
v

oV

Some special forms of Gaul3’ theorem are obtained when spehifices are substituted for
tensor7};. Substituting vector field; for 7). for example gives the Divergence Theorem
and when scalar field is substituted fofl’;;, we arrive at the Gradient Theorem.

Substitution ofe;;;b; for tensorT};, gives
///(ng)dV://(ﬁxg)dS.
1% oV

Gradient Theorem: The Gradient Theorem is Gaul’’ theorem for a scalar functiand relates
the volume and surface integrals of the scalar field overamel” enclosed by the surface

oV by:
///(V¢)dV://¢ﬁdS
1% oV

Green’s identities: One of Green’s identities is obtained whep;b; is substituted forT;, in
Gaul¥’ theorem. Combined over all componénthis leads to:

///(VXE)dV://(nxz?)ds.
14 oV

Green'’s first identity is obtained whe 0;¢) is substituted into Gaul®’ theorem @},
wheret) and¢ are once and twice continuously differentiable scalar ions respectively:

// w%dvz//w%w—///w-wdv,
14 ov 14
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where 9¢/0n = V¢ - n_denotes the derivative in the direction of the outward ndrema
V2=V.V is the Laplacian operator.

Green’s second identity is obtained from the first identityriierchanging the role ap and

¢ and subtract the resulting equations. Now bgtand ¢ are assumed twice continuously
differentiable scalar functions. Green’s second idemggds:

[ oo ow - [ (s o

Stokes’ Theorem: Stokes’ theorem relates the line integral of a smooth vefigtd b over a
closed curve)S to the surface integral df over an open surfacg bounded by curvés.
The orientations of unit tangent vectoto curvedS and the unit normal vector to surface
S are related through the right hand rule.

Stokes’ theorem reads:

Substantial derivative: The substantial derivative, also know as material dexeatis the time
rate of change following a fluid element moving with velocityand can be split into the
local and the convective derivative:
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Vector identities:

Q Q| o o Rl o
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o
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b-(Ex @) = & (axb)
b(@-&) —c(a-b)
b(@-&)—ab-é)
@-)(b-d)—(@-dyb- 2
@ (bxd)—d@-(bxa)
b(@-(@xd)—a(b-(¢xd)
f(Vg) +9(VF)
@x (Vxb)+bx(
f(Va)+a- (Vf)
b (Vxd) —a- (Vxb)
(b-V)a—(a-V)b
(Vxa)+Vfxa

(V-@)— (V-V)a

: b= (@-b)(V-7)
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B. Conservation Laws

In this chapter the derivation of the conservation laws fassland momentum is given for reasons
of completeness. It can be found in textbooks on fluid medsani clear explanation is for
example given in reference [2].

B.1. Mass Conservation

Let us consider an arbitrary control voluméfixed in space where fluid is freely flowing with
velocity 4(Z, t) through its bounding surfa¢®” with unit normal vector(z) pointing outward as
shown in Figure B.1. The equation for mass conservation, lkaiewn as the continuity equation,
expresses that an increase in mass in vollifmeaan only come from a net mass flow through its
bounding surfacé&V’

d : . o
—(Mass inV') = Net mass inflow per unit time.
dt

Figure B.1: A control volumé/ fixed in space with fluid freely flowing through its bounding
surfacedV'.

Considering thati - ndS is the volume that flows out of are&' per unit time, we can write for
the net mass flowing through the surface into control voldmeer unit time:

Mass inflow= — // pi - ndS,
v

wherep(Z,t) is the mass density of the fluid and the minus sign comes franfatt that we
defined the normal as positive when pointing outward. Thegiratl form of the equation for mass
conservation can now be written as

%///pdv+//pﬁ.ndszo. (B.1)
%4 ov
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We can use the Divergence Theorem to transform the surfaegrah into a volume integral,
provided we have a continuously differentiable vector fjaid

& [ fff i
1% |4
Il (i) -
\%4

where we used the fact that our control volume was fixed inespahift the time derivative to
the integrand. Because this equation is valid for arbitcanytrol volumes, the integrand has to be
zero for any point within/, and we arrive at the differential form of the continuity atjan

which can be written as

dp
A pil) = B.2
N + V-(pu) =0, (B.2)
which can also be written as D
-_ _1Dp
Vi = i (B.3)

For incompressible flow the mass densityf fluid particles is constant and equation (B.2) reduces
to a form without time derivative term
Vi =0. (B.4)

If we now additionally assume irrotational flowx @ = 0, we can write the velocity vector as the
gradient of a scalar functiof(Z, t), that is

i=Vo. (B.5)

Substitution of this expression for the velocity vectowitite continuity equation (B.4) results in
the Laplace equation for the unknown velocity potendial
0?°®  9*®  9*0

VIO = oGt = O (B.6)

B.2. Momentum Conservation

Momentum conservation is expressed by Newton'’s second famotion that states that, viewed
from an inertial frame of reference, the time rate of changih® linear momentum of a particle
is proportional to the net force excerted on it:

d -

— (mil) = F

wherem is the mass of the particle antits velocity.

Using our fixed control volume from Figure B.1, the equation inomentum conservation ex-
presses that an increase in momentum in voldimean only come from a net momentum flow
through its surface or from a force excerted on the fluid. Tdueagon for conservation of linear
momentum can be written symbolically as

d : : . -
&(Momentum inV’) = Net momentum inflow per unit time- F
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For the net momentum flowing through the surface into therobmblume per unit time we can
write

Momentum inflow= — // pu(d - n)dsS,
oV

where the minus sign comes from the definition of the unitaa@fnormal as positive when point-
ing outward. The momentum equation can now be written irgiatieform as

%///pﬁd‘f—i—//pﬁ(ﬁ-ﬁ) ds = F, (B.7)
1% ov

The force F' acting on the fluid can be split into body forces that act ug@rhass inside the
control volume, and forces that act on the surface of themeluBody forces are of the form

Fhody = /// pfdv, (B.8)
v

wherefis defined as the force per unit mass. An example of such a loody fs the force caused
by gravity. With the gravitational accelleration vectomdeed byg we can write this body force

as
Fgravity = /// Pgdv (Bg)
|4

The forces that act on the surface of the control volume cadtebemposed into a force due to the
static pressurg acting on surfacé@V” in normal direction

ﬁpressure = - // pn dS, (B.10)
ov

and a force due to the viscosity of the fluid

Fiscous = //T*ds = //T~nd5. (B.11)
oV ov

Including the forces due to gravity (B.9), pressure (B.1) giscosity (B.11) in the momentum
conservation equations (B.7) results in

%///pﬁdv+//pﬁ(ﬁ.n)dsz///png—//pndS+//T-nds. (B.12)
v oV 1% ov ov

We can use the Divergence Theorem and Gradient Theoremntsfdren the surface integrals in
equation (B.12) into volume integrals, provided we havergiooously differentiable tensor field
pui, pressure fielg, and stress tensor fiefd giving

o(pu _ .
///( ((;):)+V-(pﬁﬁ)+Vp—p§—V-%> dv =0,
v

where we used the fact that the control volume is fixed and waléswed to shift the time deriva-
tive to the integrand. Because this equation is valid foitity control volumes, the integrand
on the left hand side has to balance the right hand side etengwithin}’, and we arrive at the
differential form of the momentum equations:

d(pi)
ot

+ V-(ptil) + Vp — pg — V-7 = 0. (B.13)
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For Newtonian fluids the viscous stresses are considered podportional to velocity gradients
through the constitutive relation

T=p|Vi+ (Vi) —=(V-a) |, (B.14)

where the dynamic viscosity coefficientis in general a function of temperature.

This result can be simplified considerably if we assume the tibdoe inviscid and incompressible.
Additionally, we write the constant gravitational accelt&n vectorg as the gradient of scalar
function h, the height above the groungl= —gV h, where the minus sign comes frdvit: having
the opposite direction gf. The constant mass density allows us then to combine theyreeand
gravitational terms in equation (B.13) and, using the cwrity equation (B.4) for incompressible
flows, we arrive at the differential form of the momentum dapres for inviscid, incompressible
flows:
o

Pot
Using one of the vector identities from appendix A, the secterm in above equation can be
witten as

+p(@- V)i + V(p + pgh) = 0. (B.15)

(it V)i = V(;

£

<) — U x (Vxa). (B.16)

Assuming steady flow, the substitution of the vector idgritL6 in the momentum equations B.15
for inviscid, incompressible flow gives

1
V(§6-6+£+gh> = @ x (Vxi),
P

and taking the inner product with velocity vectdresults in

1
ﬁ-V(—ﬁ-ﬁJrz—)ngh) —0,
2 p

which gives us the Bernoulli equation for steady, incomgitds, inviscid, and rotational flow that
is valid in every point on a streamline througl:

ﬁ-ﬁ—i—%—i—gh:(}’(fo). (B.17)

Let us start again with the momentum equations for unsteadgcid, incompressible flow B.15,
and assume an irrotational velocity filtk i = 0. We can now introduc& = V®, and with the
use of vector identity B.16 arrive at

od 1 .
V(,OE + 5pV<I>-V‘I>+p+pgh> :0,

which gives the Bernoulli equation for unsteady, incomsitde, potential flow:

o 1
9 19e.vo 4Py gh— o), (B.18)
ot 2 p

B.3. Energy Conservation

The equation for energy conservation is based on the firstidaermodynamics that states that an
increase in total energy in a voluni&per unit time can only come from the energy added by heat
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per unit time or from the work per unit time done by forces. rigsihe fixed control volume from
Figure B.1, the equation for energy conservation for fluid/i@an be expressed symbolically by

d . . o . .
&(Energy inV') = Net energy inflow per unit time+ Heat + Work.

Let E(#,t) be the total specific energy, that is the total energy permags, and let(Z, t) be the
internal specific energy that comes from molecular motidme tal specific energy is the sum of
the internal specific energy and the kinetic specific endrgyis associated with the bulk velocity
(@, t), that is

E=c+ i (B.19)

The total energy in volum&” is

Energy inV = /// pE dV.
v

For the net energy flowing through the surfag¥ into the control volume per unit time we can
write

Energy inflow= —// pE(i-n)dS,
v

where the minus sign comes from the definition of the unitaa@fnormal as positive when point-
ing outward. The expression for energy conservation canb®written as

%///pE dV—i—//pE(ﬁ-ﬁ) dS = Heat + Work. (B.20)
14 oV

The heat that is added to the volume can be split into bodyrtgtitat acts on the fluid inside the
volume, and surface heating that acts through thermal atimiuand is caused by gradients in the
heat distribution. Le®)(Z,t) denote the body heat in Joule per unit volume per unit time,l@n

¢ be the heat flux vector in Joule per unit area per unit timay the

Body heating = // Qadv, (B.21)
v

Surface heating= — //J- nds. (B.22)
v

In general, for the work done per unit time by applying a fofc@é’,t) to the fluid moving with
velocity @(Z, t) we can write
Wforce = JF U

The forces can be split into body forces that act upon the magte the volume, and forces that
act on the surface of the volume, see Appendix B.2.

An example of a body force is the gravitational force. Witk tiravitational accelleration vector
denoted by we can write the work done per unit time by this body force as

Woravity = / / / pg - i dV. (B.23)
1%
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The forces that act on the surface of the control volume catebemposed into a force in normal
direction due to the static pressurer, t) acting on surfac@V” and a force due to the viscosity of
the fluid. The work done by the static pressure per unit time is

Wpressure = - //Pﬁ n dS, (824)
oV

and for the work done by viscous forces per unit time we have

Wm’scous = //7? udS = //(7' : ’J) -ndS. (525)
ov ov

Combining all heat and work contributions in the expressarenergy conservation B.20 results

in the energy equation in integral form:
//pu ndS+///pg udV

%/V//pEdv+a/V/pE(ﬁ i) dS
///wv [fios

+ // (7 -il) -7 dS. (8.26)

We can use the Divergence Theorem to convert the surfaggatgeo volume integrals, provided
we have continuously differentiable vector fiejd8, pi, ¢, and7 - @, and arrive at

/V/ /V/ V-(pBT) dV = // v-(pﬁ)dv+///pg.gdv
// Qav - // Vv
" ///V% @) dv, (B.27)

where we used the fact that the control volume is fixed and wealfowed to shift the time deriva-
tive to the integrand. Because this equation is valid foitty control volumes, the integrals
have to balance each other everywhere in volifrend consequently the equation can be written
in differential form:

I(pE)
ot

_|_

+

+ V-(pE#) + V-(pii) — pj - il — Q + V-q— V(7 - i) = 0. (B.28)

We can rewrite above energy equation in terms of total spemifihalphyH (Z, t) which is defined
as

H=E+2 (B.29)
P

The substitution of the definition for total specific enthglpin energy equation B.28 gives a
simpler enthalphy equation that does not explicitly canthie pressure work term:
9(pH)
ot

+ V-(pHu) = 6t—|—pg U+Q—V-g+V-(T-u). (B.30)

0
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Expanding the term on the left hand side of the equation, asking use of the continuity equa-
tion B.2, the non-conservative form of the equation forltetehalphyH is obtained

DH 0p

pﬁza+pg~u+Q—V-q+V-(T~u). (B.31)

The energy equation is supplemented with two equationsaté sind two constitutive relations,
one for stress tensai(#, t) and one for heat flux vect@i(Z, t). A model for the heat flux vector
is given by Fourier’s law

qd=—rVT,

wherex is the heat conduction coefficient, aidz, ¢) the temperature field.

The constitutive relation for the stress tensor was intceduin the derivation of the momentum
equations in Appendix B.2 and is

_ 2 _
%:uVﬁ+Wmf—§vm1,

with 1 the dynamic viscosity coefficient that is in general a fumttof temperaturd’”.

Two equations of state complement the energy equation: ppegsing the relation between
pressurey, mass density, and temperatur@’, and one expression for the specific internal energy
e. For a calorically perfect gas the two equations of state are

p = pRT,

with R the specific gas constant which for air is approximately= 287 Joule per kilogram per
Kelvin, and
e=c,T,

with ¢, the specific heat at constant volume.

Related to these two expressions and the definition of spexithalpyh = e + 1—; is the relation
h=¢c,T,

with ¢, the specific heat at constant pressure. The ratio betwedwdhspecific heats is denoted
by~y = 2 and is for airy = 1.4.
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C. Boundary Integral Equation

In an inertial Cartesian coordinate system in which coatis are denoted by= (z,y, 2)', the
Laplace equation for the velocity potential in unsteadgpmpressible flow, in domailf € R?,
can be written as
?d  0’°d 0’9
V-V = =0 C.1
Ox? + Oy? + 022 €1

Although the Laplace equation has no time-dependent tdrenyelocity potentiakb(Z,t) is a
function of space and time. Unsteady boundary conditioflanttioduce time-dependency in the
solution. In this section, this time-dependency is imgiicassumed. The problem in volunmé
can be reduced to a problem involving only surface intedrglthe introduction of a special form
of the Divergence Theorem that relates the volume and suifgegrals of an arbitrary tensor
function over a voluméd’ enclosed by surfac@V with unit normal vectorn pointing into the
volume:

B/V/ (UoVU — U V) -1 dS = /V// (0,920, — W, V20, dV. c.2)

Equation (C.2) is known as Green’s second identity in whigffiegedV’ is piecewise continuous
and the scalar functiong; and ¥, are assumed to be twice continuously differentiable.

Now, let us set for 3D flows

Uy =

1
;7 \PQ = (I)’ (C3)

in which ®(Z,) is the velocity potential function in point. (see Figure C.1) andis the distance
from pointz, on the enclosing surface to an arbitrary fixed paijst

—

T=xp — Iy, r=|F| where 2, € OV. (C.4)

Notice that
1

and V?- =0, for  r#0. (C.5)
T

Figure C.1: Flow domain with region surroundifg € V' excluded from the domain of integra-
tion.
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For point - outside flow domain// both ¥; and ¥, satisfy the Laplace equation and equa-
tion (C.2) becomes
1 1 _ o
// <<I> V; - ;V(I)) -ndS = 0, Tp ¢ V. (C.6)
1%

In case pointd, is inside the domain of intere$t, a small sphere with radiusis introduced to
exclude volumé/, around pointz, from the volume of integration (see Figure C.1). Again, both
¥, and ¥, satisfy the Laplace equation and equation (C.2) now becomes

1 1
OV +0Ve

Now, let us evaluate the integral over the surface of thergphig. With equation (C.5) we have

//( V— — —V‘b) nds = // (@— — —V@ n) ds. (C.8)

For a sphere with radiuswe have/[ dS = 4me?. Assuming a continuously differentiable velocity
potential® and lettinge — 0, the second term in equation (C.8) vanishes:

[f (ivon)as =52 [ (7 s =0

while for the first term in equation (C.8) we find

a/v/ <<I>ﬁr—'f) dsS = —<b(fp)a/V/ (%) dS = —4mw ®(Z), (C.10)

where we used for the normal vector on the sphere the expressi

= et T (C.11)
|7y — Zp | r

Substitution of this result in equation (C.7) gives an egpien for the velocity potentiab in an
arbitrary pointz, € V in terms of an integral over the boundari#s’:

O(5) = %// (cb vl 1v¢>> ndS, @ eV (C.12)
™ T T
oV

The same procedure can be followed for paiptiocated oroV. Now only half a sphere is sur-
roundingZ», assuming that, is not located at a surface-slope discontinuity. In addijtibe in-
tersection of the hemisphere witfy’ is excluded from the surface of integration (see Figure.C.2)
This results in the following integral:

1 1 1
O(2p) = 2—// (@ V- — —V@) -n.dS, p € OV. (C.13)
7r r r
ov

In summary, we have found that

1 1 1 0 Tr §é v,

4—// ((I) V- - —V(I)) ndS =14 3®(Z) T €IV, (C.14)
T T () eV
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f—

26\,./

Figure C.2: Flow domain with region surroundifmig € 9V excluded from the domain of integra-
tion.

Now, consider the situation in Figure C.3 in which we have lfection of non-overlapping sub-
domainsV;,,, each with a velocity potential functiod,,. Some of the flow domains will have
physical significance, while others are introduced to alfowcertain boundary conditions, or
for their influence on external regions. The boundary sejpgraolumeV,,, from volumeV}, is

denoted byS,,,
Sk = OVin NOVy, m # k, (C.15)

and normal vectof:,, is defined to point into subdomair,,. The surfaceS of the configuration
and its wake (see Figure C.3) are described by the completd smer boundaries:

S = USp k- (C.16)

The outer boundary) ; is located either a finite or an infinite distance away fromitiner bound-
aries in case of internal or external flows respectively.

Figure C.3: Flow domain composed of non-overlapping volsivig and boundariess,,, ;. that
separate volumg;,, from volumeV,.

Summation of all surface integral contributions to the eélopotential in a pointé, € V' some-
where in the domain gives:
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B(F) = //( o — ) v- - —V( —fl)k)>-nmd5+
i// <(I)1 Vl - 1V‘I’1> -np dS, T € V. (C.l?)
4 T T
So,1

If outer boundarysy ; lies an infinite distance away from the other boundariesctimgribution to
®(z,) from the integral in equation (C.17) fé ; can be considered to represent the unperturbed
velocity potential® ., (%) in the entire domain, i.e. the velocity potential if no infEundaries
were present. The integral contributions from the innemblauies may thus be considered per-
turbation velocity potentials. Of course this is only valfidhe velocity potential perturbation in
equation (C.17) vanishes at infinity.

If we now define the dipole and source surface singularigngjths to be
n=-= ((I)m - (I)ka) and 0= V((I)m - (I)k) “ T (C.18)

and, using the definition for in equation (C.4), introduce the dipole and source pertioha

velocity potentials
= nm T
ou(@p) = — // (C.19)

oo(@) = —//a—dS (C.20)

we can reformulate boundary integral equation (C.17) as
O(Tp) = Poo(Tp) + ‘Pu(fp) + o (Tp), Tp € V. (C.21)

The perturbation velocity potential functions as define@guation (C.19) and equation (C.20)
vanish towards infinity and satisfy the far-field conditioemtioned. The integrals have a singular
integrand which results in a jump in velocity potential &6+ of size—p:

S S S .
o(Zp — SE) = QB(Z € S) + oh(Tp € 5) F §u(xp € 9), (C.22)
whereS* andS~ denote the sides df,, , when approached from volunig, or from volumeV,
respectively. The?(z» € S) terms are to be interpreted as Cauchy principal value or adh
finite part integrals in which a small region around the siagpoint is excluded from the surface
of integration.
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