Process performance improvement by Hybsi® nanosieve membranes for dehydration by pervaporation

H.M. van Veen
A. Motelica
D.P. Shanahan
R. Kreiter
M.D.A. Rietkerk
H.L. Castricum
J.E. ten Elshof
J.F. Vente

Presented at Euromembrane 2009, Montpellier, France, 6-10 September 2009
Process performance improvement by HybSi® nanosieve membranes for dehydration by pervaporation

Henk M. van Veen, Anatolie Motelica, Donough P. Shanahan, Robert Kreiter, Mariëlle D.A. Rietkerk, Hessel L. Castricum, Johan E. ten Elshof, Jaap F. Vente

a Energy research Centre of the Netherlands, Efficiency and Infrastructure, Molecular Separation Technology, PO Box 1, 1755ZG Petten, The Netherlands.
b Inorganic Materials Science, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente.
c Van ’t Hoff Institute for Molecular Sciences Faculty of Science, University of Amsterdam.

vanveen@ecn.nl

The key objective of the International Energy Agency (IEA) for future energy technologies is to reduce CO$_2$ emissions with ~50Gt/yr by 2050. The 27 EU states decided a 20% boost overall in renewable fuel use by 2020. In another key measure EU leaders decided to cut carbon dioxide emissions by 20% from 1990 levels by 2020. Carbon-neutral bio-based fuels such as ethanol, butanol, and bio-diesel are promising candidates for transportation purposes. Effective and energy-efficient separation technologies to dehydrate the wet fuels are needed for large scale application. It is widely accepted that molecular separation membranes will play a crucial role in this transition to sustainable transportation fuels. Furthermore these membranes can be used in the energy efficient dehydration of all kinds of chemicals.

Pervaporation or hybrid distillation-pervaporation separation processes using membranes are commonly considered options for the energy efficient dehydration of organics. We recently explored the use of organic-inorganic hybrid silica for microporous membranes. These membranes have unprecedented life times of at least 2 years in the dewatering of n-butanol at 150°C. These membranes have a good performance in the dehydration of ethanol as well, both under pervaporation and vapor permeation conditions. Here, we report on the optimization of industrial processes using these new membranes. By process simulation and flow sheeting for example the bio-ethanol production process via fermentation has been calculated, new process schemes have been made and the process has been optimized. Calculations show that an important improvement in the energy consumption can be obtained, meeting the future environmental criteria but also leading to important cost price reductions.

Process improvement by HybSi® membranes in dehydration pervaporation – bio-ethanol production

Henk van Veen, et.al.
Contents

• Background
• HybSi® pervaporation membranes
 - Preparation and performance
• Bio-ethanol production process
• HybSi® membranes in bio-ethanol
 - Measurement data
 - Flow sheeting results
• Conclusions
Background

- Objective IEA: reduce CO$_2$ emissions with 50 Gt/yr by 2050
- 27 EU states: 20% renewable fuels by 2020
- EU: cut CO$_2$ emissions by 20% in 2020 compared to 1990
- Needed for bio-based fuels
- Molecular separation can play key role, e.g. in dehydration of bio-ethanol
- Need for stable and high flux pervaporation membranes
Hybrid membranes from bisfunctional silica precursors

HybSi®

Stable membranes: replace Si—O—Si bonds by Si—C—C—Si bonds

\[(\text{OC}_2\text{H}_5)_3 - \text{Si} - \text{CH}_2 - \text{CH}_2 - \text{Si} - (\text{OC}_2\text{H}_5)_3\]

(bis(triethoxysilyl)ethane, BTESE)

Patented in collaboration with Univ. of Twente and Univ. of Amsterdam (Ashima Sah, Andre ten Elshof, Hessel Castricum, Marjo Mittelmeijer)

Precursors and preparation of HybSi® membranes

Precursors:
BTESE + MTES
BTESE
BTESM

MTES
\[
\text{Et}_2\text{SiOEt}_2
\]

BTESE
\[
\text{Et}_2\text{SiOEt}_2 \longrightarrow \text{SiOEt}_2
\]

BTESM
\[
\text{Et}_2\text{SiSiOEt}_2
\]
Performance HybSi® membranes, 190°C

Feed = 5 wt.% water in nBuOH
BTESE precursor
stable > 1 month

Tests up to 150°C see:
J. Membr. Sci. 2008, 324, 111-118
Application testing - alcohols

Feed = 5 wt.% water in alcohol

Water content permeate (wt.%) vs. alcohol type and temperature.

- MeOH
- EtOH
- PrOH
- BuOH

Temperature:
- T = 55 °C
- T = 70 °C
- T = 85 °C
- T = 95 °C

ChemSusChem 2009, 2, 158-160
Acid stability

Feed: 5 wt.% water in \(n\)-BuOH

0.005 – 0.5 wt.% HNO\(_3\)

BTESE

- Water flux (kg/m\(^2\)h)
- Time on stream (d)
- Water content permeate (wt.%)

Feed: 5 wt.% water in EtOH

0.15 wt% HAc

BTESM

- Water flux (kg/m\(^2\)h)
- Time on stream (d)
- Water content permeate (wt.%)

J.Mater.Chem. 2008, 18, 1-10

ChemSusChem 2009, 2, 158-160
Bio-ethanol Production

- Sugar Crops - Sucrose;
- Cereal crops – Starch;
- Lignocellulosic biomass - Lignocellulosic;

0.995 wt. fraction
Final EtOH concentration

Energy research Centre of the Netherlands
HybSi® Membranes for Bio-ethanol Production: data

Water and ethanol flux and permeance vs. temperature in a binary mixture

\[
y = 0.0004e^{0.044x} \\
R^2 = 0.9915
\]

\[
y = 0.0032e^{0.0299x} \\
R^2 = 0.9966
\]
HybSi® Membranes for Bio-ethanol Production: flow sheets

Constant feed of 450 t/hr

<table>
<thead>
<tr>
<th>Feed Composition (wt fraction EtOH)</th>
<th>Distillation Column</th>
<th>Pervaporation Unit</th>
<th>Total Duty (PJ/Year)</th>
<th>Final EtOH Flow (t/year)</th>
<th>Duty (MJ/L-EtOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_{Total} (PJ/Year)</td>
<td>% Q_{Total}</td>
<td>Condenser</td>
<td>Elec. Vacuum Pump</td>
<td>Q_{Cooler}</td>
</tr>
<tr>
<td>0.02</td>
<td>1.3</td>
<td>98</td>
<td>0.013</td>
<td>0.000</td>
<td>0.009</td>
</tr>
<tr>
<td>0.05</td>
<td>1.8</td>
<td>97</td>
<td>0.039</td>
<td>0.000</td>
<td>0.025</td>
</tr>
<tr>
<td>0.08</td>
<td>2.3</td>
<td>95</td>
<td>0.067</td>
<td>0.000</td>
<td>0.043</td>
</tr>
<tr>
<td>0.12</td>
<td>2.8</td>
<td>94</td>
<td>0.101</td>
<td>0.000</td>
<td>0.065</td>
</tr>
</tbody>
</table>
HybSi® Membranes for Bio-ethanol Production: energy

Dewatering Energy (MJ/L)

- Base Case (MS)
- HybSi PV
- Siftek™

D-MS vs D-HybSi PV
D-PV energy savings: 7 to 22%

D-PV without Cooling Water

Siftek™ D-VP vs HybSi® D-PV

- Siftek™ DID NOT consider the cooling water energy;
- Siftek™ is optimized in two membrane steps;

<table>
<thead>
<tr>
<th>Feed EtOH (wt %)</th>
<th>MJ/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4,6</td>
</tr>
<tr>
<td>12</td>
<td>3,5</td>
</tr>
<tr>
<td>Siftek™</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4,8</td>
</tr>
</tbody>
</table>
HybSi® Membranes for Bio-ethanol Production: economics

Costs of utilities taken from DACE (Dutch Association of Cost Engineers)
Reboiler (DC) and Heater (MS): Steam;
Molecular Sieve: Natural Gas;
Vacuum pump (PV): Electricity;
Condensers (DC and PV unit) and Coolers (PV and MS units): Cooling water;

D-HybSi PV cost savings:
6 to 23%;
HybSi® Membranes for Bio-ethanol Production: economics

Payback period
I (Initial investments, M€) and Mr (Membrane replacement, M€/3years)

Payback period for different membrane replacement factors (Mr) and initial investments (I).

- **I = 5, Mr = 0,5**
- **I = 11,3, Mr = 1,1**
- **I = 19, Mr = 1,9**
- **I = 29, Mr = 2,9**

The graph shows the payback period in years for different EtOH fraction in Feed (wt.%). The x-axis represents the EtOH fraction in Feed, while the y-axis represents the payback period in years.

The curve for each factor shows how the payback period changes with the EtOH fraction in Feed. The factors are labeled as follows:
- Factor 1
- Factor 0.8
- Factor 0.6
- Factor 0.4
- Factor 0.2
HybSi® Membranes for Bio-ethanol Production

Conclusions for D-HybSi PV vs. D-MS

- HibSi® membrane shows energetic (up to 22%) and economic (up to 23%) benefits in bio-ethanol production
- A payback period of 6 years is realistic, a cost decrease or a flux increase by a factor 2 is wished
- After return of investment: savings from 0.6 to 4.7 M€/year
- Environmental benefits PV vs. MS (not presented):
 - CO₂ emissions: reduction almost 100% leading to extra economic savings from 68 to 520 k€/year)
 - Reduction in cooling water up to 19%
Further information and acknowledgements

Chem. Commun., 2008, 1103-1105
J. Mater. Chem., 2008, 18, 2150-2158
J. Sol-Gel Sci Techn., 2008, 48, 203-211
J. Mem. Sci., 2008, 324, 111-118
ChemSusChem, 2009, 2, 158-160
Patent: WO2007081212

ECN
T.N. Ferreira Novo Simões de Matos
A. Motelica R. Kreiter
D.P. Shanahan G.G. Paradis
M.D.A. Rietkerk J.F. Vente
H.M. van Veen

Twente University / University of Amsterdam
H.L. Castricum J.E. ten Elshof
A.J.A. Winnubst

www.hybsi.com

[Vanveen@ecn.nl](mailto:vanveen@ecn.nl)