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Abstract 
Besides primary effects such as reducing greenhouse gas emissions, climate policies may have 
secondary (side) effects - called ‘spillovers’ - such as the induced innovation and diffusion of 
new technologies, both nationally and internationally. These spillovers of climate policies, in 
turn, may affect the (long-term) performance of these policies, for instance in terms of abate-
ment costs or emission reductions, both at home and abroad. 
 
The aim of this report is to provide a critical assessment of the available literature of both so-
called ‘top-down’ and ‘bottom-up’ modelling studies on the spillover effects of climate policies 
on induced technological change - including the innovation and diffusion of new technologies at 
home and abroad - as well as, in turn, the impact of these technological spillovers on the long-
term performance of these policies. 
 
After a review of the central concepts ‘induced technological change’ and ‘technological spill-
overs’, the present assessment report discusses the potential impact of induced technological 
spillovers on global carbon abatement. Subsequently, it addresses the question whether climate 
policy will induce technological change by (i) reviewing the (empirical) literature on techno-
logical change induced by environmental policies and/or higher energy prices, and (ii) discuss-
ing the (theoretical) literature on the relationship between market imperfections and environ-
mental technologies. 
 
Thereafter, the report provides a critical assessment of existing studies on induced technological 
change and spillovers in ‘top-down’ and ‘bottom-up’ approaches of climate policy modelling. 
Besides major differences between these two approaches, it reveals that the top-down modelling 
studies are generally characterised by a wide diversity in model outcomes with regard to the im-
pact of induced technological change (ITC) on climate policy performance, whereas the bottom-
up studies show some major similarities in their model outcomes. 
 
Finally, the present assessment report considers briefly some implications for the post-Kyoto 
agenda on climate and technology policies. In general, it concludes that a well-balanced pack-
age of internationally coordinated climate and technology policies is necessary to deal with the 
two sets of international market imperfections in the field of abatement technologies (i.e. envi-
ronmental externalities and technology market failures). 
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SUMMARY FOR POLICYMAKERS 

Besides primary effects such as reducing greenhouse gas emissions, climate policies may have 
secondary (side) effects - called ‘spillovers’ - such as the induced innovation and diffusion of 
new technologies, both nationally and internationally. These spillovers of climate policies, in 
turn, may affect the (long-term) performance of these policies, for instance in terms of abate-
ment costs or emission reductions, both at home and abroad. 
 
The aim of this report is to provide a critical assessment of the available literature of both so-
called ‘top-down’ and ‘bottom-up’ modelling studies on the spillover effects of climate policies 
on induced technological change - including the innovation and diffusion of new technologies at 
home and abroad - as well as, in turn, the impact of these technological spillovers on the long-
term performance of these policies. 
 
Potential impact of induced technological spillovers 
After a review of its central concepts ‘induced technological change’ and ‘technological spill-
overs’, the present assessment report discusses a paper by Grubb et al. (2002b) on the potential 
impact of induced technological spillovers on global carbon abatement. By means of some sim-
ple (optimistic) assumptions and numerical illustrations, this paper shows that spillover effects 
from mitigation actions in the industrialised, Annex I countries can exert a huge leverage effect 
on reducing global emissions, and that over time the diffusion of abatement innovations, in-
duced by mitigation actions in the Annex I countries, outweighs the leakage of emissions due to 
the relocation of production to other, developing countries (also induced by Annex I actions). 
On balance, the overall result of mitigation actions in the industrialised countries is to reduce 
emissions in the developing countries as well. 
 
The outcome of the exercise by Grubb et al. (2002b), however, depends highly on the (implicit) 
assumption that mitigation actions in the industrialised countries will induce a large variety of 
(relatively cheap) abatement technologies that are not only widely adopted in industrialised 
countries but also in developing countries (even if these latter countries do not have a climate 
policy incentive to adopt these technologies themselves). Moreover, the study of Grubb et al. 
(2002b) is based on the critical (but unreal) assumption of no emissions trading between Annex 
I and non-Annex I countries. This implies that the costs (or GDP losses) to meet the Annex I 
mitigation target for the year 2100 will be rather high, notably because this target is rather strin-
gent, while there is no opportunity to meet this target by means of cheaper emissions reductions 
in non-Annex I regions through CDM-based trading. 
 
Climate policy encourages innovation and diffusion of technologies 
Subsequently, the present report addresses the question whether climate policy will induce tech-
nological change by (i) reviewing the (empirical) literature on technological change induced by 
environmental policies and/or higher energy prices, and (ii) discussing the (theoretical) literature 
on the relationship between market imperfections and environmental technologies. The most 
important finding is that the available evidence on induced technological change by environ-
mental policies and/or higher energy prices seems to support the hypothesis that (future, strin-
gent) climate policy will encourage the innovation and diffusion of new technologies that will 
address the issue of controlling global warming in a more cost-effective way. Some qualifica-
tions, however, can be added to this general finding. 
 
Firstly, the impact of climate policies on the promotion of emission abatement technologies will 
vary depending on the time period and type of technological change considered. Secondly, cli-
mate policy may not only induce technological change but, in turn, the innovation and diffusion 
of more cost-effective abatement technologies may affect the optimal target, timing and/or in-
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strument choice of climate policy. Thirdly, although climate policy may induce abatement tech-
nologies that are more cost-effective, that does not necessarily imply that the costs of this policy 
are lower, depending on the definition of ‘costs’ and whether the abatement target is fixed or 
not. Fourthly, the fact that climate policy will induce technological change does not say any-
thing about which (mix of) instruments will be more or less cost-effective to do so. 
 
A final, but perhaps most important qualification is that, while climate policy may induce tech-
nological change, the impact of climate policy alone will be far from optimal as the innovation 
and diffusion of green technologies is generally faced by two related sets of market imperfec-
tions. While climate policy may stimulate new technology as a side effect of internalising the 
costs of the environmental externality (i.e. the greenhouse effect), it does not address explicitly 
the other set of market imperfections directly related to technological change (such as the inci-
dence of spillover effects). On the other hand, simply relying on the promotion of technological 
change by technology policy alone is not enough as there must be a long-term, predictable and 
credible climate policy-induced incentive in place that encourages the process of technological 
change to occur actually in the direction of innovating and diffusing improved carbon abatement 
technologies. Therefore, a balanced set of climate and technology policies is necessary to pro-
mote the innovation and diffusion of emission abatement technologies and, hence, to address the 
issue of global warming in an optimal way. It should be acknowledged, however, that the proc-
ess of technological change is not only characterised by potential market failures but also by po-
tential policy or government failures such as the lack of public information, the incidence of 
free-riding, and the risk of ‘picking the winners/losers’ (e.g. in case of subsidising/taxing spe-
cific technologies). 
 
Assessment of ‘top-down’ and ‘bottom-up’ studies 
Thereafter, the report provides a critical assessment of existing studies on induced technological 
change and spillovers in ‘top-down’ and ‘bottom-up’ approaches of climate policy modelling. 
Top-down models are general macroeconomic models that analyse the economy - including the 
energy system - in highly aggregated terms, with hardly any detail on energy or mitigation tech-
nologies at the sector level. Such models are particularly suitable for analysing macroeconomic 
effects of climate policies, including the interactions and feedback effects at the intersectoral, 
(inter)national, regional or global level. Over the past decade, induced technological change has 
been incorporated in these models, particularly by linking the accumulation of knowledge and 
experience to changes in climate policy. 
 
Induced technological change in top-down modelling studies 
In general, ITC top-down modelling studies show a wide divergence of results with regard to 
the impact of induced technological change and spillovers on the performance of climate policy. 
Whereas this impact is generally large and positive in some studies, it is relatively low or even 
negative in others. This divergence in the major results of top-down modelling studies with re-
gard to the impact of ITC/spillovers on the performance of climate policies can be explained by 
the methodology and data used. More specifically, besides differences in ITC channel (i.e. R&D 
versus learning-by-doing) and in policy optimisation criteria (i.e. the cost-effectiveness criterion 
versus the benefit-cost criterion), these differences in outcomes can be mainly attributed to (i) 
the specification of some critical model functions, particularly the ITC or knowledge accumula-
tion functions, (ii) model parameterisation and data use, (iii) the role of spillovers, and (iv) the 
role of other modelling characteristics varying among these studies such as the scope or level of 
aggregation (sectoral, national, regional, global), the number and type of policy instruments 
covered, the stringency of the abatement target, or the time horizon considered (i.e. the impact 
of ITC is often more significant in the long term). 
 
Despite substantial progress made over the past decade, the present ITC top-down studies are 
still faced by a variety of weaknesses and limitations. Due to these limitations and the diversity 
of their model outcomes, it is hard to draw firm lessons and implications from these studies. 
Nevertheless, a major lesson from these studies seems to be that even if climate policy induces 
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technological change at the level of individual sectors or technologies, it does not imply that the 
social costs of such a policy will decline by necessity. Another lesson is that, when analysing or 
generating ITC, not only its impact on gross social costs should be considered but also its poten-
tial environmental benefits. A final implication of the present state of ITC top-down studies is 
that further research is necessary in order to draw more firm policy lessons and implications. 
 
Induced technological change in bottom-up modelling studies 
On the other hand, bottom-up energy system models are usually characterised by a detailed 
analysis of energy technologies, including information on the costs and other performance char-
acteristics of these technologies such as the energy efficiency or GHG emissions per unit input 
or output. Since the mid-1990s, technological change has been endogenised in some of these 
models by means of so-called learning curves that relate the costs of specific technologies to the 
accumulation of knowledge and experience during the innovation and diffusion stages of these 
technologies. 
 
In contrast to the ITC top-down studies, the ITC bottom-up studies reviewed in the present re-
port show some major similarities in performance, in terms of both methodological approach 
and major findings of the models used. In order to explore the interaction between climate pol-
icy and induced technological change, these studies have used a detailed, bottom-up energy 
technology system model in which learning curves have been added to the cost functions of 
(some) energy technologies covered by these models. The major outcomes of these studies are 
that, due to the presence of ITC (i.e. ‘learning technologies’), (i) the investment costs of these 
technologies decline if they built up capacity (‘experience’), (ii) the energy technology mix 
changes in favour of those technologies that built up the relatively highest rate of learning (i.e. 
cost reduction), and (iii) the total abatement costs of a given abatement target decline signifi-
cantly. 
 
However, although there is a large degree of agreement among bottom-up studies with regard to 
these results, the size of the impact of ITC on, for instance, the technology mix or abatement 
cost may vary substantially between these studies depending on the assumed rate of technologi-
cal learning, the number of learning technologies included in the analysis, the time frame con-
sidered, the stringency of the mitigation target, the setting of market penetration limits, etc. 
 
Moreover, despite significant progress made in endogenising technological change in bottom-up 
modelling studies over the past decade, the present state of these studies is still characterised by 
too many weaknesses and limitations to draw a set of firm, specific policy lessons and implica-
tions. Nevertheless, a few general lessons and implications can be formulated. Firstly, perhaps 
the most important policy message from technology learning is that new technologies require 
markets to become commercial. Hence, as it takes time to build up capacity (i.e. ‘learning’ or 
‘experience’) and to reduce costs until a market break-even point is reached, there is a need for 
early policy action to accomplish the required cost and performance improvements in the long 
term, including the creation of niche markets, the development of small-scale demonstration 
plants, targeted R&D, and the (temporary and declining) subsidization of promising technolo-
gies. 
 
Another lesson is that, owing to the presence of spillovers, the imposition of emission con-
straints in the Annex I region may induce technological change and, hence, emission reductions 
in the non-Annex region even when the latter region does not face emission constraints itself. A 
final lesson or implication is that further research is needed in order to draw more concrete, firm 
policy conclusions from ITC bottom-up modelling studies. 
 
Implications for post-Kyoto agenda 
Finally, this assessment report considers briefly some implications for the post-Kyoto agenda on 
climate and technology policies. In general, it concludes that a well-balanced package of inter-
nationally coordinated climate and technology policies is necessary to deal with the two sets of 
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international market imperfections in the field of abatement technologies (i.e. environmental ex-
ternalities and technology market failures). More specifically, it suggests that the innovation and 
diffusion of emission-saving technologies can be stimulated by the following options: 
• International co-operation on Research, Development, Demonstration and Deployment ac-

tivities (R&D3). 
• Encouraging technology diffusion through trade, investment and other general, macroeco-

nomic policies. 
• Stimulating technology diffusion through emissions trading, notably the Clean Development 

Mechanism (CDM), and sound technology transfer strategies, including the improvement of 
the absorptive capacity for technological innovation and diffusion in developing countries. 

• Promoting the innovation and diffusion of carbon-saving technologies by means of volun-
tary agreements (‘covenants’) between governments of the climate coalition and a few inter-
national firms that dominate R&D and technological change in certain areas, for instance the 
international automobile industry. 

 
These options should be part of the post-Kyoto agenda in order to enhance the potential positive 
interaction between climate policy, induced technological change and international spillovers, 
including the potential positive impact of this interaction on mitigating global greenhouse gas 
emissions and reducing total abatement costs. 
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1. INTRODUCTION 

Besides primary effects such as reducing greenhouse gas emissions, climate policies may have 
secondary (side) effects - called ‘spillovers’ - such as the induced innovation and diffusion of 
new technologies, both nationally and internationally.1 These spillovers of climate policies, in 
turn, may affect the (long-term) performance of these policies, for instance in terms of abate-
ment costs or emission reductions, both at home and abroad. 
 
The aim of this report is to provide a critical assessment of the available literature of both so-
called ‘top-down’ and ‘bottom-up’ modelling studies on the spillover effects of climate policies 
on induced technological change - including the innovation and diffusion of new technologies at 
home and abroad - as well as, in turn, the impact of these technological spillovers on the long-
term performance of these policies. 
 
The structure of the present report runs as follows. First, Chapter 2 provides a conceptual 
framework, particularly with regard to the terms ‘induced technological change’ and ‘techno-
logical spillovers’. Subsequently, Chapter 3 discusses a study by Grubb et al. (2002b) on the po-
tential impact of induced technological spillovers on global carbon abatement. Next, Chapter 4 
tries to answer the question whether climate policy will induce technological change by (i) re-
viewing the (empirical) literature on technological change induced by environmental policies 
and/or higher energy prices, and (ii) discussing the (theoretical) literature on the relationship be-
tween market imperfections and environmental technologies. Thereafter, Chapters 5 and 6 as-
sess existing studies on induced technological change and spillovers in ‘top-down’ and ‘bottom-
up’ approaches of climate policy modelling, respectively. Finally, Chapter 7 discusses the im-
plications of the present assessment report for the post-Kyoto agenda on climate and technology 
policies. 

                                                 
1  Another example of spillovers due to climate policy concerns ‘carbon leakage’. See Kuik (2004) and Chapter 2 of 

the present study. 
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2. CONCEPTUAL FRAMEWORK 

2.1 Induced technological change 
The notion of induced technological change was first introduced by Hicks (1932) who noted 
that changes in relative prices of production factors such as labour or capital would spur the de-
velopment and diffusion of new technologies in order to economise on the usage of the more 
expensive production factor. Starting from the 1960s, this notion of induced (or ‘endogenous’) 
technological change has been used by the so-called endogenous or ‘new’ growth theory in or-
der to account for economic growth and technological changes endogenously within a macro-
economic model.2 Subsequently, the idea of induced technological change has been applied to a 
variety of other disciplines, such as energy or environmental economics. More recently, i.e. 
since the mid-1990s, it has also been used in the field of climate policy modelling.3  
 
In this paper, the process of technological change covers the widely used Schumpeterian trilogy 
of invention (i.e. the first development and demonstration of a scientifically or technically new 
product or process), innovation (i.e. the first regular commercial production of a new technol-
ogy) and diffusion (i.e. the spread of a new technology across its potential market).4 For the pur-
pose of this paper, induced technological change is defined as the component of technological 
change that is brought about in response to government climate policy (while the term endoge-
nous technological change will be used in the same meaning, although in a modelling context). 
Climate policy is primarily aimed at controlling greenhouse gas (GHG) emissions (i.e. mitiga-
tion) and includes both market-based instruments (such as taxes, subsidies or tradable permits) 
and command-and-control regulations (such as setting performance- or technology-based stan-
dards for firms or households). 
 
Basically, there are two channels through which induced technological change can be imple-
mented, i.e. via ‘research and development’ (R&D) and ‘learning-by-doing’ (LBD). Although 
these two channels are mostly treated quite exclusively in the literature of energy and climate 
policy modelling, in practice they seem rather complementary in the sense that the invention 
and innovation stage of technological change are covered largely through the channel of R&D 
and the diffusion stage via LBD. 
 

                                                 
2 In this paper, the terms ‘induced technological change’ (ITC) and ‘endogenous technological change’ (ETC) will 

be largely used interchangeably, although the concept ITC refers primarily to technological changes due to changes 
in policy or economic conditions (in contrast to ‘autonomous’ technological changes which are not induced spe-
cifically by changes in policy or economic conditions). On the other hand, the term ECT is primarily used as a 
modelling concept, referring to technological changes that are explained within a scientific model (in contrast to 
‘exogenous’ technological changes which are treated as ‘given’ and remain unexplained within the model). It 
should be noted, however, that in a small part of the literature, the terms ETC and ITC refer to different concept in 
the sense that ETC refers to the broad notion of (neutral) technological progress that responds to economic incen-
tives (in order to account for changes in the general stock of knowledge and R&D that affect overall economic 
growth), while ITC refers specifically to the bias or direction of technological innovations in response to changes in 
relative prices or other economic conditions (Jaffe et al., 2003). For instance, Buonanno et al. (2003) distinguish 
between ETC, referring to changes in the general stock of knowledge that affect the overall productivity of capital 
and labour, and ITC, referring specifically to changes in the emissions output ratio that are induced by changes in 
the general stock of knowledge. 

3 For a discussion of the evolution of the theory of induced technological change and endogenous economic growth, 
see Hayami and Ruttan (1985), Grübler et al. (2002), and Mulder 2003. 

4 Occasionally, another stage called ‘niche market’ is distinguished as a separate stage between the innovation and 
(wide-spread) diffusion stages in the process of technological change. The term ‘niche market’ refers to the first 
phase of diffusion of a new technology in a special, separate market (i.e. with high positive demand) in which a 
new technology can relatively easily spread, even though the production costs are still high (Grübler and Messner 
1998; Grübler and Gritsevskyi, 2002; and Gerlagh et al., 2004). 
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In the first case, i.e. through R&D, the introduction of climate policies such as a carbon tax or 
standard increases the market for carbon-mitigation technologies and, hence, creates an incen-
tive for increased R&D investments in these technologies. In modelling terms, these increased 
investments lead to an increase of the knowledge capital stock, which is part of the production 
or innovation function of a firm, sector, country or region. 
 
In the second case, i.e. via LBD, climate policies encourage primarily the adoption of GHG-
mitigation technologies, resulting in declining costs of these technologies due to the accumula-
tion of knowledge and experience among producers and users as the installed capacity of these 
technologies expands (where the declining costs further encourage their adoption, etc.). In mod-
elling terms, this process of technological change is expressed by a learning or experience curve 
that relates the costs of a technology to its cumulative installed capacity. This capacity is used as 
a measure of the accumulation of knowledge and experience during the manufacturing stage of 
the technology (‘learning-by-doing’).5 
 
The speed of learning is usually expressed by the progress rate (PR) or its complementary learn-
ing rate (LR=1-PR), defined as the rate at which the costs of a newly installed technology de-
clines each time its cumulative installed capacity doubles. For instance, a progress ratio of 0.8 
(or a learning rate of 0.2) means that the costs per unit of a newly installed capacity (e.g. a wind 
turbine) decrease by 20 percent each time its cumulative installed capacity is doubled (Seebregts 
et al., 2000). 
 
The impact of technological change induced by climate policy is usually analysed by two broad 
approaches for modelling the interaction between the economy, energy and environment: bot-
tom-up (BU) versus top-down (TD).6 These approaches differ mainly with regard to the empha-
sis placed on a detailed, technologically based treatment of the energy system, and a theoreti-
cally based treatment of the general economy. Bottom-up models are partial models of the en-
ergy sector, lacking adequate interactions with the rest of the economy. In general, these models 
are characterised by a detailed analysis of the energy system, covering a wide variety of energy 
technologies, including data on the costs and other performance characteristics of these tech-
nologies (such as the energy efficiency or GHG emissions per unit output). Bottom-up models 
are mostly used to compute the least-cost option of meeting an exogenous demand for final en-
ergy services subject to various system constraints such as a GHG mitigation target. In addition, 
they often analyse the deployment or market penetration of specific energy technologies based 
on (policy-induced changes in) their costs and other performance characteristics. Technological 
change occurs as one technology is substituted by another (Löschel, 2002). 
 
Top-down models, on the other hand, are general macroeconomic models that analyse the econ-
omy - including the energy system - in highly aggregated terms, with hardly any detail on en-
ergy or mitigation technologies at the sector level. Such models are particularly suitable for ana-
lysing macroeconomic effects of climate policies, including the interactions and feedback ef-
fects at the intersectoral, (inter)national, regional or global level (Sijm et al., 2002). Top-down 
models, however, do not provide much insight in the process of innovation and diffusion of 
concrete, individual technologies. In such models, technological change is usually expressed at 
an abstract, aggregated level through a change in the production or innovation function, either 

                                                 
5 In some parts of the literature, a distinction is made between three basic types of learning: learning in the R&D 

stage of a technology (‘learning-by-searching’), learning at the production or manufacturing stage (‘learning-by-
doing’) and learning as a result of using the technology (‘learning-by-using’). See Mulder (2003), and Jaffe et al., 
(2003 and 2004). 

6 This section is based on Löschel (2002). For a further discussion of the characteristics and performance of these 
two modelling approaches, see Hourcade et al. (1996); Weyant and Hill (1999); IPPC ( (2001)) and Sijm et al. 
(2002). These references discuss also some ‘mixed’ approaches which link a top-down representation of the econ-
omy with a bottom-up description of technologies in the energy sector, See, for instance, Criqui et al. (1999) or 
Manne and Richels (2004). 
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exogenously - i.e. by means of autonomous efficiency parameters - or endogenously, i.e. by 
means of an induced change in the knowledge stock or learning capacity of an economy. 
 
In bottom-up models, induced technological change is generally effectuated via the channel of 
learning-by-doing (LBD). In top-down models, on the other hand, it is usually implemented via 
the channel of R&D, although a few top-down approaches have relied on the LBD channel, ei-
ther exclusively or including alternately (but not simultaneously) the LBD and R&D channel 
(see Chapters 5 and 6 for a further assessment of the performance of different modelling ap-
proaches in analysing induced technical change). 
 

2.2 Technological spillovers 
The concept of spillovers originates in the literature of R&D and technological change - includ-
ing the innovation and endogenous growth theories - where it has been applied under a variety 
of largely synonymous labels such as ‘R&D spillovers’, ‘knowledge spillovers’, ‘technological 
spillovers’, ‘innovation spillovers’ or equivalent terms such as ‘R&D or knowledge external-
ities’. These concepts all refer to the fact that knowledge has a high non-rival, public-good char-
acter and that, as a result, a private innovator may be unable to fully appropriate the social re-
turns of investments in R&D and technological change. A major part of these social returns will 
accrue as ‘spillovers’ or ‘positive externalities’ to competitors - who will be able to use the 
knowledge as well - or to downstream firms and customers who purchase the innovator’s prod-
uct at a price that captures only a portion of its full value (including the enhanced quality of the 
innovated product). This ‘appropriability problem’ or ‘spillover gap’ between the private and 
social returns of innovations is likely to lead to significant underinvestment by private firms in 
R&D, relative to the social optimum (Jaffe et al., 2003).7 
 
This paper will use the concept ‘technological spillovers’ defined as ‘any positive externality 
that results from purposeful investment in technological innovation or development’ (Weyant 
and Olavson, 1999). They can be distinguished with regard to the level at which they occur: 
technological spillovers may be intra- or intersectoral, varying from the local to the international 
level. Moreover, they can be either embodied in tradable goods or disembodied, i.e. not directly 
related to the flows of intermediate and end-use products.8 More specifically, in the field of 
global GHG mitigation, technological spillovers can take place through a wide variety of chan-
nels, including local or international trade of goods and services, foreign direct investments, 
R&D collaboration at the sectoral and international level, personal communications, technologi-
cal and scientific upgrading through relevant literature and business networks, JI/CDM transac-
tions, and the migration of scientists and skilled labour forces. 
 
Recently, the concept of spillovers has been used in a wider meaning in the literature on climate 
policy. For instance, according to the Third Assessment Report of the IPCC, ‘spillovers from 
domestic mitigation strategies are the effects that these strategies have on other countries. Spill-
over effects can be positive or negative and include effects on trade, carbon leakage, transfer 
and diffusion of environmentally sound technology, and other issues’ (IPCC, 2001). A similar 
definition of spillovers has been used by Grubb et al. (2002a and 2002b; see also Grubb, 2000).  
 

                                                 
7 Besides spillovers, there are a variety of other externalities and imperfections in the markets for investments in 

R&D and technical change such as uncertainties, imperfect information, capital constraints, ‘rent-stealing’ or 
‘common-pool’ effects, and network (or ‘positive adoption) externalities. For a discussion of these market imper-
fections and their implications for private investments and public interventions in the field of environmental R&D 
and technological change, see Section 4.4. below as well as Parry (2001), Grubb and Ulph (2002), and Jaffe et al. 
(2002, 2003 and 2004). 

8 Similar distinctions of ‘embodied’ versus ‘disembodied’ spillovers concern ‘market’ or ‘rent’ spillovers versus 
‘pure knowledge’ spillovers. For these and other distinctions of spillovers, see Griliches (1992), Jaffe (1998), Wey-
ant and Olavson (1999), Keller (2001), Grünfeld (2002), and Cincera and Van Pottelsberghe de Potterie (2002). 
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In their definition, spillovers refer to the impact of mitigation actions by the industrialised coun-
tries on the level of GHG emissions in the developing countries. They distinguish three compo-
nents of international spillovers: 
• Spillovers due to economic substitution effects, such as price or terms-of-trade effects, re-

sulting in a leakage (or negative spillover) of emissions.9 
• Spillovers due to the diffusion of technological innovations induced by abatement action in 

the industrialised countries and transferred to the developing countries. This component cor-
responds to the (narrow) definition of spillovers originating in the R&D literature mentioned 
above. 

• Spillovers due to policy and political influence of industrialised countries mitigation efforts 
on developing countries abatement actions, such as the spread around the world of abolish-
ing fossil fuel subsidies, accepting mitigation commitments, liberalising electricity markets 
or implementing other energy efficiency-enhancing measures. 

 
Whereas the first component implies a negative spillover, the other two components are in most 
cases sources of positive spillovers. According to the quantitative analysis of Grubb et al. 
(2002b), the positive spillovers of climate policies may over time far outweigh the negative 
spillovers (see Chapter 3 for a discussion of this quantitative analysis). 

                                                 
9 In their definition of (the first component of) international spillovers, Grubb et al. (2002) are merely focused on the 

physical implications of international spillovers, i.e. on the impact of abatement efforts by the industrialised coun-
tries (‘carbon leakage’), including the impact on global average temperature and long-term sea level rise. In con-
trast, Böhringer and Rutherford (2002 and 2004) focus their analysis on the welfare implications of international 
spillovers, i.e. the impact of carbon abatement policies of industrialised countries on international market prices, 
the allocation of economic resources and, hence, on the costs and benefits of these policies accruing to other coun-
tries. 
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3. THE POTENTIAL IMPACT OF INDUCED TECHNOLOGICAL 
SPILLOVERS ON GLOBAL CARBON ABATEMENT 

Recently, Grubb et al. (2002b) have estimated the potential impact of international spillovers 
due to mitigation actions by the industrialised countries on the level of GHG emissions in the 
developing countries. As noted in Section 2.2, they employ a broad definition of international 
spillovers, including three components. Spillovers due to economic substitution (‘emission leak-
age’), spillovers due to the diffusion of technological innovation, and spillovers due to policy 
and political influence of industrialised countries' mitigation efforts on developing countries' 
abatement actions. In their quantitative analysis, they represent international spillover in terms 
of its impact on the relative emissions intensity, defined as the ratio of CO2 emissions to GDP, 
in different parts of the world (based on Grubb, 2000). 
 
More specifically, by means of a simple equation that links emission intensities in the industrial-
ised, Annex I region to those in the developing, non-Annex I region, Grubb et al. (2002b) repre-
sent international spillover in terms of the relative convergence of these regional emissions in-
tensities over the 21st century by an aggregate spillover parameter σ (which includes the three 
components of international spillovers mentioned above). If σ = 0 there is no spillover effect, 
representing the case in which the emission intensities of the developing countries is completely 
independent of those in the industrialised counties. On the other hand, if σ = 1, there is full or 
perfect spillover, representing the case in which average emission intensities in the non-Annex I 
region converges to the same level of the (declining) emissions intensity in the Annex I region 
by the end of the 21st century. 
 
In order to illustrate the potential impact of spillover effects on the emission level of developing 
countries, Grubb et al. (2002b) take as their reference case the SRES A2 scenario of the IPCC 
(2000a), modified by the assumed mitigation commitments of the industrialised countries, i.e. 
the Kyoto commitments until 2012 followed by a decline in Annex I emissions by 1% per year 
thereafter. In this ‘stringent’ mitigation scenario, carbon emissions of the industrialised coun-
tries decrease from about 4000 MtC in 2000 to less than 1600 MtC by the end of the 21st cen-
tury (see Figure 3.1). In the absence of international spillovers (σ = 0), emission intensities in 
the developing countries are projected roughly to halve in the business-as-usual case by 2050 
(when they will reach roughly the levels of the industrialised world in 1990). By 2100, in this 
case, emission intensities in the developing, non-Annex I region will be about five times those 
in the industrialised, Annex I region. In the case of full international spillovers (σ = 1), on the 
contrary, non-Annex I intensities will decline roughly twice as fast until 2050 and, as indicated, 
they will converge to the levels of the industrialised region by 2100, while the abatement tech-
nologies and practices induced by the mitigation actions in this region diffuse through the de-
veloping world (Grubb, 2000; Grubb et al. 2002a). 
 
Figure 3.1 illustrates the potential spillover effects of stringent mitigation actions in the industri-
alised countries in total developing country emissions over the 21st century. It shows that these 
effects can be very large. For instance, in case of no spillover (σ = 0), total non-Annex I emis-
sions increase steadily from 2,100 MtC in 2000 to 13,000 MtC in 2100, while in case of full 
spillover (σ = 1), they are stabilised around mid century and start to decline slowly thereafter, 
amounting to some 2,100 MtC again in 2100 (i.e. about one-sixth of their level in case of no 
spillover). 
 
By means of the PAGE95 integrated assessment model, Grubb et al. (2002b) are able to esti-
mate the potential implications of international spillovers in terms of cumulative emissions, at-
mospheric CO2 concentrations, and changes in mean global temperature or long-term sea level 
rise. In the stringent mitigation scenario (Kyoto + 1%/yr decline of Annex I emissions), unitary 
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spillover reduces total cumulative emissions in 2100 by almost 700 GtC, from 1480 GtC (zero 
spillover) to 800 GtC. The corresponding changes in atmospheric CO2 concentrations by 2100 
amount to a decline of 170 parts per million by volume (ppmv), from 740 ppmv (σ = 0) to 
570 ppmv (σ = 1). This would imply a change in mean global temperature from pre-industrial 
levels by 2100 of 2.7°C in case of full spillovers (compared to 4.2°C if σ = 0), resulting in a re-
duction of the mean sea level rise in 2100 by about 40 cm. As sea level continues to rise for 
many decades after concentrations have stabilised, the impact of full spillovers upon sea level 
rise in the 22nd century would be even greater (Grubb et al. 2002b). 
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Source: Grubb et al. (2002b). 
 
Figure 3.1 Spillover effects of stringent mitigation actions of industrialised countries (DCs) on 

total emissions of developing countries (LDCs) over the period 2000-2100 (in MtC) 
 
Overall, the analysis of Grubb et al. shows that spillover effects from mitigation actions in the 
industrialised countries can exert a huge leverage effect on reducing global emissions, and that 
even relatively low levels of technological and institutional spillovers are sufficient to offset the 
(negative) spillover of carbon leakage. Over time, the diffusion of abatement innovations, in-
duced by mitigation actions in the Annex I countries, outweighs the leakage of emissions due to 
the relocation of production to other, developing countries (also induced by Annex I actions). 
On balance, the overall result of mitigation actions in the industrialised countries is to reduce 
emissions in the developing countries as well (Grubb et al., 2002a and 2002b). 
 
The results of Grubb et al., however, depend critically on the value of the aggregated spillover 
variable (σ). Based on some historical reflections and some assumptions with regard to the long-
term future, they argue that zero or negative international spillovers, as assumed in many other 
studies, is ‘not credible’ and that the most likely range for the spillover variable in their model is 
0.5-1.0. However, the empirical database or parameterisation of this aggregate variable, includ-
ing its constituent components, is weak and highly uncertain. 
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More specifically, the (optimistic) outcome of the analysis by Grubb et al. depends highly on 
the (implicit) assumption that mitigation actions in the industrialised countries will induce a 
large variety of relatively cheap abatement innovations that are not only widely adopted in in-
dustrialised countries but also in developing countries (even if these latter countries do not ac-
cept mitigation commitment themselves). Only if these innovations are relatively cheap, carbon 
leakage from the industrialised countries will be low while their diffusion among developing 
countries will be high, resulting in a relatively high value of the aggregate spillover variable (in 
the range of 0.5-1.0). If not, carbon leakage will be high while developing countries (with no 
mitigation commitments) will lack the incentive to adopt cleaner, but more expensive technolo-
gies, leading to relatively low values of the spillover parameter (0.1-0.2 or even negative). Al-
though there is some evidence that stringent climate policies in industrialised countries may in-
duce cost-reducing abatement innovations in these countries (and, hence, reduce carbon leakage 
from these countries), little is known about the relative cost aspects and adoption rates of these 
innovations in developing countries. Therefore, although the analysis of Grubb et al. is quite il-
lustrative with regard to the potential implications of spillover effects on global emissions, at 
present it lacks empirical validation and, hence, it may turn out to be too optimistic. 
 
Another limitation of the paper of Grubb et al. is that it is based on the critical (but unreal) as-
sumption of no emissions trading between Annex I and non-Annex I countries, and that it does 
not consider the implications of this assumption. The major implication of this assumption, 
however, is that the costs (or GDP losses) to meet the Annex I mitigation target for the year 
2100 will be rather high, notably because this target is rather stringent, while there is no oppor-
tunity to meet this target by means of cheaper emissions reductions in non-Annex I regions 
through CDM-based trading. Allowing such trading (as agreed by the Kyoto protocol) would 
reduce these costs substantially. In addition, however, it would also imply that the impact of in-
ternational technology spillovers on total, global emissions would be nullified as it would allow 
non-Annex I countries to sell their emission reductions - resulting from these spillovers - to An-
nex I regions, which could subsequently raise their emissions accordingly. Hence, there seems 
to be a trade-off between the impact of emissions trading on total abatement costs and total 
emissions reductions (see also the discussion in Chapter 6 on emissions trading and global tech-
nological spillovers). 
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4. DOES CLIMATE POLICY INDUCE TECHNOLOGICAL 
CHANGE? 

4.1 Introduction 
This chapter reviews some of the existing literature on energy and environmental policies in or-
der to deal with the basic question whether climate policy induces technological change. More 
specifically, it addresses the following issues: 
• What is the empirical evidence with regard to the induced innovation and diffusion of 

‘green’ technologies, i.e. technologies that are favourable to protecting the environment in 
general and to controlling global warming in particular (Section 4.2)? 

• What are the major market imperfections and other factors affecting the inducement of tech-
nological change (Section 4.3)? 

• What are the major policy implications of the two issues mentioned above (Section 4.4)? 
 
Beforehand, it should be emphasized that the empirical literature on the evidence of induced 
technological change by climate policies as such is still extremely limited as these policies have 
only been introduced in Annex I countries over the past few years. Hence, this period has gener-
ally been too short to observe and explore major examples of technological innovation and dif-
fusion induced by climate policies. Therefore, in order to assess the potential role of climate 
policies versus other factors affecting technological innovation and diffusion, the scope of the 
literature review in this chapter will be focused on studies dealing with changes in similar 
(‘green’) technologies induced by similar policies or events over the past three decades such as 
environmental regulation, pollution abatement subsidies, energy saving measures or higher fuel 
prices due to either the oil shocks of the 1970s or higher energy taxes thereafter.10 
 

4.2 Empirical analyses of induced changes in green technologies 
Induced innovation 
Empirical studies on the progress of green technologies have used a variety of proxy variables 
to explore the relationship between environmental policies and induced changes of these tech-
nologies. For instance, in Lanjouw and Mody (1996), pollution abatement expenditures serve as 
a proxy for the stringency of environmental regulation while the rate of patenting in related 
technology fields is used as an indicator for induced innovation. By means of country-level data 
on these variables, they found a significant correlation across nations between environmental 
regulation and induced innovation of pollution abatement technologies. Similarly, Jaffe and 
Palmer (1997) explored the relationship between pollution abatement expenditures and indica-
tors of innovation across industries, using US data. They found a significant correlation between 
these expenditures and the level of R&D spending, as indicated by the estimated elasticity of 
pollution control R&D with respect to pollution control expenditures of 0.15. However, when 
estimating the same relationship using patents as the indicator of innovation, they did not find 
an impact of pollution control expenditures on overall patenting. 
 
Other studies have used energy prices or related regulations as the mechanism of induced inno-
vation, notably in the field of energy saving. Although the observed price changes might not be 
policy related, the results can also be applied to situations where policy affects prices, such as 
energy or carbon taxation. For instance, Newell et al. (1999) analysed the impact of both energy 
prices and energy saving regulations on technological innovations in energy efficiency of home 
                                                 
10  The sections below are based on review studies of the relevant literature by Jaffe et al. (2002, 2003 and 2004), and 

Grubb et al. (1995 and 2002a), supplemented by other studies mentioned in the main text. 
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appliances - such as air conditioners and gas water heaters - in the US over the period 1958-
1993. They found that a substantial portion (estimated at 62 per cent) of the overall change in 
energy efficiency of these products could be associated with ‘autonomous’ factors rather than 
with ‘induced’ or ‘endogenous’ variables such as energy prices or regulations. Nevertheless, a 
significant amount of innovation was still due to these endogenous variables, with energy prices 
accounting for the largest inducement effect (mainly because changes in energy prices induced 
both commercialisation of new models and elimination of old models, whereas regulations 
worked largely only through energy-inefficient models being dropped). Moreover, this effect of 
energy price increases on model substitution was particularly strong after product-labeling re-
quirements became operative in the US. Indeed, simulations by Newell et al. (1999) suggest that 
the post-1973 energy price increases account for one-quarter to one-half of the observed im-
provements in the mean energy efficiency of models offered for sale over the period 1973-93. 
Hence, besides autonomous factors, a significant amount of innovation in terms of enhancing 
energy efficiency of home appliances can be ascribed to endogenous variables, notably energy 
price increases combined with regulations to inform customers on the energy efficiency of dif-
ferent models of these appliances. 
 
The relationship between energy prices and energy-selected innovation has been explored more 
broadly by Popp (2001, 2002, 2003a and 2004c; see also Chapter 5). He uses the number of suc-
cessful US patents sorted by application date as an indicator of innovative activity. Perhaps the 
most striking result of this empirical work is the speed at which innovative activity responds to 
incentives. By correlating US data on energy prices and patenting activity for various energy 
technologies over the years 1970-93, he shows that innovation responds strongly and quickly to 
price incentives. For instance, following the first energy crisis of the early 1970s, the number of 
successful patents for solar energy (sorted by their application data) jumped from 10 in 1972 to 
36 in 1973, 104 in 1974, 218 in 1975, and a peak of 367 patents in 1977 (Popp, 2002 and 
2003a). This result suggests that part of the first wave of innovation after the energy crisis of the 
early 1970s was not due to new ideas being discovered, but rather the introduction of existing, 
technologically feasible ideas that may simply have been taken ‘off the shelf' and brought to 
market when the conditions were right. 
 
In addition, some other relevant findings of the empirical work of Popp on the relationship be-
tween energy price and induced innovation include: 
• Estimates of the long-run elasticity of energy R&D with respect to changes in energy prices 

suggests that the response is inelastic (i.e. 0.35)11. Hence higher energy prices (or similar 
policies that increase the cost of using fossil fuels) can be expected to stimulate new re-
search on energy saving, although less than proportionally. 

• There are diminishing returns to energy R&D within a given field of technological innova-
tions. Although energy prices peaked in the early 1980s, patenting activity in energy-related 
technologies began to drop already during the late 1970s. Popp (2002 and 2003a) provides 
evidence that this decline can be explained by diminishing returns to R&D over time. 
Hence, the inducement effect of energy prices on technological innovation in a given field 
will fall over time (Popp, 2004c). 

• In order to estimate the impact of technological innovations on energy use, Popp (2001) uses 
patent data to create stocks of knowledge of 13 energy intensive industries. He found that 
approximately one-third of the overall response of energy use to changes in energy prices is 
associated with induced innovation, with the remaining two-thirds associated with factor 
substitution, i.e. a movement along a given production function by substituting energy for 
other production factors such as capital or labour (see also Popp, 2003a as well as Jaffe et al. 
2002). 

 

                                                 
11  As mentioned above, in a similar study, Jaffe and Palmer (1997) estimated a comparable elasticity of pollution 

control R&D with respect to pollution control expenditures of 0.15. 
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Some qualifications, however, have to be added to the work of Popp (and other authors) with 
regard to the use of patent data as a proxy for innovative activity. In order to explore the in-
ducement effect of (energy) prices or policies on innovative activity, ideally one would need de-
tailed, reliable data on public and private R&D activities and the performance of these activities 
in generating specific (successful) innovations, including data on the importance of these inno-
vations in terms of potential or actual adoption rates and impact on, for instance, the average 
cost, energy or emission savings of a sector. As the present database is generally far away from 
this ideal situation, proxy variables have to be used as an indicator of innovative activity. 
 
Using patent data as an indicator of innovative activity offers some advantages (Popp, 2003a). 
Firstly, unlike more aggregate data on R&D expenditures, patents provide a detailed record of 
each invention. Moreover, economists have found that, to some degree, patent counts not only 
serve as a measure of innovative output, but are also indicative of the level of R&D activity it-
self. In addition, patent data are available from many different countries and can be used to ex-
amine levels of innovative activity across countries or to track patterns of diffusion. Finally, 
when a patent is granted, it contains citations to earlier patents that are related to the current in-
vention. As a result, the previous patents cited by a new patent should be a good indicator of 
previous knowledge that was utilized by the inventor.12 
 
On the other hand, using patent data has some limitations (Popp, 2002 and 2003a; Schmitz, 
2001). Firstly, the quality or importance of individual patents varies widely. Some inventions 
are extremely valuable, whereas others are of hardly any value in terms of commercial success 
or output performance, including energy or emission savings. Hence, a peak of patenting activ-
ity in a certain year following a price hike may represent a large number of minor, hardly valu-
able innovations (‘taken from the shelf’), while a trough of such activities five years later may 
contain a major, time-consuming breakthrough. 
 
Secondly, another limitation is that not all successful R&D results are patented. In return for re-
ceiving a patent, the inventor is required to publicly disclose the invention. Rather than make 
this disclosure, firms may prefer to keep an invention secret in order to avoid other firms ‘in-
venting around’ the new technology or, secondly, to prevent the product from being copied once 
the exclusive property rights expire (Popp 2003a and Schmitz, 2001). 
 
Finally, a related limitation or difficulty of using patent data is that the ‘propensity to patent’ - 
and, hence, the correlation between R&D and patenting activity - varies significantly amongst 
technological fields and industries as well as over time. These variations can be due to different 
and changing patenting laws, patenting costs (compared to potential patent revenues) and the 
degree of ‘R&D opportunities’ in the surrounding scientific network (Schmitz, 2001, Popp, 
2002). Therefore, because of these limitations, patent (or similar) data as an indicator of innova-
tive activity have to be used with due care. 
 
Another qualification to the work of Popp is offered by Schmitz (2001) who also uses patent 
data to estimate the effect of energy prices on energy-efficient innovations. In contrast to Popp, 
however, Schmitz found that energy prices had no significant positive impact on innovative ac-
tivity as measured by patents. To some degree, this difference in outcome can be attributed to 
differences in data and methodologies used. More interestingly, however, is that Schmitz did 
find a significant positive relation between innovative activity and energy taxes (expressed as 
the ratio of taxes in energy prices). According to Schmitz, this result points to the importance of 
taxes in price signals as one might regard the tax ratio as an indicator of public concern about 
ecological problems related to energy consumption. Hence, following this interpretation, the tax 
ratio is a better indicator of real expectations than mere prices since price movements may be 
regarded as temporary, whereas energy taxes can normally be expected to be of a more perma-

                                                 
12  Interestingly, Popp (2003a) mentions a study on citations made to NASA patents, which concludes that aggregate 

citation patters represent knowledge spillovers. 
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nent nature. Therefore, perhaps, the most important result of Schmitz (2001) - and qualification 
of Popp (2002) - is that, if energy shows any price increases, then only long-term predictable 
ones have a significant impact on major innovations, which support a credible tax policy such as 
the ‘eco-taxation’ of energy use in several European countries. 
 
Up to now, the studies considered above have all explored the link between innovative activity 
and variables such as energy prices or environmental policies, which are either directly or indi-
rectly related to and comparable with climate policies. As mentioned in Section 1, the empirical 
literature on the evidence of induced technological change by climate policies as such is still ex-
tremely limited as these policies have only been introduced in Annex I countries over the past 
few years. A noticeable exception is the study of Christiansen (2001), who assesses the impact 
of Norwegian carbon taxes - the key instrument in Norway’s climate policy - on technological 
innovation in the petroleum sector. The balance of evidence suggests that the imposition of car-
bon taxes has provided some incentive for innovation that has shifted upstream petroleum op-
erations in a less emission-intensive direction. The pattern of technological change pertains 
mostly to small, incremental process innovations, cumulative improvements, and adaptations of 
technologies already available, such as technologies to reduce and eliminate flaring. In addition 
a few examples of more radical innovations encouraged by carbon taxation are mentioned by 
Christiansen (2001), notably the application of carbon capture and storage technologies in oil 
and gas production. 
 
Induced diffusion 
In the field of pollution abatement and energy efficiency, there are several empirical studies on 
the inducement effect of environmental policies or energy prices on the diffusion of ‘green’ 
technologies.13 For instance, US studies on the reduction of SO2 emissions or the elimination of 
lead in gasoline show that the introduction of a tradable permit system has provided a strong in-
centive for the diffusion and adoption of cost-effective technologies to deal with these environ-
mental issues. 
 
Other studies have found a positive effect of fuel price increases on the adoption of new fuel-
saving technologies in the transport sector, the power-generating sector and the energy-intensive 
industrial sectors. A similar, although often less strong effect has been found in the residential 
sector with regard to the diffusion of energy-saving appliances and thermal insulation technolo-
gies. In general, the adoption of these residential technologies turns out to be more sensitive to 
the level or changes of the up-front installation costs than the level or changes of energy prices 
and other longer-term operational expenditures. This indicates that subsidies on installation 
costs may be more effective than ‘equivalent’ energy taxes in encouraging technology diffusion 
in the residential sector (Jaffe et al., 2002; see also Section 4.4 below). 
 
In addition, there is a lot of empirical evidence on the positive inducement effect of market or 
price policies on the diffusion of green technologies, notably renewable energy technologies. 
For instance, turbines for generating wind power have been adopted widely over the past 15 
years in countries such as Denmark, Germany and Spain owing to a favourable policy package, 
including ‘eco-taxation’ of fossil fuel-generated electricity and/or supportive measures for wind-
generated electricity such as granting subsidies or relatively high feed-in tariffs (Sijm, 2002; 
Lako 2004). 
 
On the other hand, studies that have explored the inducement effect of command-and-control 
instruments on technology diffusion have shown ambiguous results depending on the stringency 
of these instruments, including the differentiation of this stringency among old versus new 
sources of environmental pollution. In the US, some standards - for instance, on automobile fuel 
use - have been very effective, whereas others - for instance, on state building codes - have 

                                                 
13  For a review of these studies see Grubb et al. (2002a) and, particularly, the publications of Jaffe et al. (2002, 2003 

and 2004). 
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shown no discernable effect as they were hardly binding relative to existing standards of typical 
practice. In some cases, notably when pollution abatement regulations have been set more strin-
gent for new sources than for existing ones, these regulations have even exerted a negative im-
pact on the diffusion of new, green technologies by encouraging firms to postpone the retire-
ment of older, dirtier installations (see Jaffe et al., 2002, 2003 and 2004 for a review of these 
studies). 
 
At the international level, there are hardly any studies on diffusion of green technologies (let 
alone on the international diffusion of technologies induced by climate policies). A major 
exception is offered by Lanjouw and Mody (1996), who show that green technologies have 
indeed diffused from developed to developing countries in three ways, i.e. through (i) imports of 
technologies embodied in pollution abatement or energy saving equipments, (ii) imports of 
disembodied environmental technology, i.e. foreign patents registered and used in developing 
countries, and (iii) development of domestic patents geared towards adapting imported 
technology to local conditions. 
 
In addition, a few other available studies have provided some examples of the international dif-
fusion of green technologies, including (a) the development of more fuel efficient cars in Japan 
in response to the oil price shocks and, subsequently, the diffusion of these cars to foreign mar-
kets, (b) the diffusion of more fuel-efficient, steel-making technologies among developed and 
developing countries, and (c) the international diffusion of bio-energy and other renewable en-
ergy technologies, for instance wind turbines from Denmark to other countries, encouraged by 
the learning effects and resulting decreases in specific investment costs of these technologies 
owing to the expansion of the (domestic) installed capacity of these technologies (see Grubb et 
al., 1995 and 2002b, as well as the companion papers of the spillover project, notably Oikono-
mou et al., 2004; Annevelink et al., 2004, and Lako, 2004). 
 
To conclude, there is ample empirical evidence on the inducement effect of policies and prices 
on the innovation and diffusion of ‘green’ technologies to support the hypothesis that (future, 
stringent) climate policy will indeed induce technological change. The available evidence, how-
ever, seems to be less ambiguous with regard to the induced diffusion of green technologies 
than to their induced innovation, notably of major, fundamental breakthroughs (compared to the 
evidence on a variety of minor, commercial applications of induced innovations). Moreover, the 
performance of induced technological change seems to depend not only on the choice (and 
stringency) of alternative policy instruments but also on a variety of other factors, such as the 
prevalence of market imperfections, which will be discussed further in the sections below. 
 

4.3 Market imperfections and green technologies 
Introduction 
A fundamental aspect of environmental issues such as climate change is that when it comes to 
developing and diffusing technologies to address these issues, there are basically two mutually 
reinforcing sets of market imperfections at work, which make it very likely that the rate of in-
vestment in the development and diffusion of such technologies is less than would be socially 
optimal (Jaffe et al., 2004). The first set of market imperfections concerns the existence of so-
called ‘environmental externalities’, while the second set refers to the prevalence of market fail-
ures and other, related factors that inhibit the socially optimal development and diffusion of 
technologies to address environmental issues such as climate change. While the present section 
will briefly outline these two sets of market imperfections, the subsequent section will discuss 
the policy implications of the prevalence of these imperfections for the optimal inducement of 
these green technologies. 

ECN-C--04-073  21 



Environmental externalities 
An economic or social activity may have a harmful consequence on the environment, which is 
borne (at least in part) by a party or parties other than the party who controls this activity. In the 
field of environmental economics, such a consequence is usually denoted as a negative ‘external 
effect’ or ‘externality’.14 
 
For instance, a firm or car that pollutes the air without bearing the full consequences or costs of 
this negative impact on the environment causes an externality. As the firm or car owner does not 
have an economic incentive to minimize the ‘external’ costs of this pollution (by restricting or 
changing its underlying activity), the market - i.e. Adam Smith’s ‘invisible hand’ - allows too 
much of it and, hence, does not operate to produce an outcome that is socially desirable. There-
fore, such an environmental externality is an example of a so-called ‘market failure’ or ‘market 
imperfection’. 
 
At their core, all environmental policy interventions are designed to deal with the above-
mentioned externality problem, either by internalising environmental costs so that polluters will 
make socially efficient decisions regarding their consumption of environmental inputs (for in-
stance, by eco-taxing these inputs), or by imposing a level of environmental pollution that pol-
icy makers believe to be more socially efficient than that otherwise chosen by firms or car own-
ers (for instance, by imposing an emission cap or pollution standard). A socially efficient envi-
ronmental policy requires, firstly, the comparison of the marginal cost of reducing pollution 
with the marginal benefit of a cleaner environment and, subsequently, the abatement of this pol-
lution as far as at its marginal cost is lower or equal to its marginal benefit (Jaffe et al., 2004). 
 
Market imperfections regarding technological change 
New, green technologies improve the terms of the trade-off between the marginal costs of pollu-
tion abatement and its social benefits. This means that not only a specific level of pollution 
abatement can be achieved at lower costs to society but also that it will be more efficient to en-
hance this level than would be efficient if pollution abatement were more expensive (Jaffe et al., 
2004). On the other hand, it also implies that environmental policy interventions will have two 
effects: they reduce pollution by addressing the environmental externality problem explained 
above, while they also change the incentives to develop and adopt new technologies to reduce 
pollution by changing the environmental cost/benefit ratio. Hence a socially efficient environ-
mental policy requires not only the weighing of the static costs and benefits of reducing pollu-
tion but also the consideration of the dynamic interaction between environmental policy and in-
duced technological change. 
 
Technological change, however, is not itself free, but costly as both innovation and diffu-
sion/adoption of new technologies demand the investment of resources, for instance to conduct 
R&D and to purchase, adapt and learn about new technologies (compared to using available, 
cheaper but dirtier technologies). Therefore, a socially efficient technology policy requires, first 
of all, the comparison of the marginal cost of technological change with its marginal benefits 
and, subsequently, the promotion of technological change as far as its marginal cost is lower or 
equal to its marginal benefits. 
 
This raises the question whether the market or ‘invisible hand’ will choose the optimal level of 
investment in the process of technological change (or whether technology policy interventions 
can, in principle, be justified on social efficiency grounds). It turns out that, independent of the 
prevalence of environmental externalities, both the innovation and diffusion of technology are 
characterised by a variety of market imperfections. More specifically, the most important mar-

                                                 
14  More generally, Jaffe et al. (2004) define an externality as 'an economically significant effect of an activity, the 

consequences of which are borne (at least in part) by a party or parties other than the party who controls the exter-
nality-producing activity'. 
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ket failures with regard to technological innovation include (Parry, 2001; Grubb and Ulph, 
2002; and Jaffe et al., 2002, 2003 and 2004): 
• Knowledge externalities or spillover effects. As explained in Section 2.2, this category of 

market imperfections refers to the fact that, due to the high public-good character of knowl-
edge, a private firm may be unable to fully appropriate the social benefits of investments in 
R&D, leading to underinvestment in technological innovation by the private sector, relative 
to the social optimum. Hence, whereas a social or economic activity creates usually a nega-
tive environmental externality - of which the market allows too much - investments in R&D 
and technological innovation generally creates a positive externality, of which the invisible 
hand produces too little. 

• Capital market failure. Investments in R&D are characterised by large risks and uncertain-
ties due to the wide and specific variation of their expected returns (i.e. often low-
profitability but high-value outcomes). In addition, the asset produced by the R&D invest-
ment process is specialised, sunk and intangible, so that it cannot be mortgaged or used as 
collateral. This combination of great uncertainty and intangible outcomes makes financing 
of R&D through capital market mechanisms more difficult than for traditional investment. 
The difficulty of securing financing for research from outside sources may lead to under-
investment in R&D, particularly for small firms that have less internally generated cash 
and/or less access to financial markets (Jaffe et al., 2003). 

• Rent-stealing or ‘common-pool’ effects. This category refers to the problem that a firm may 
not take into account that its investments in R&D may reduce the potential rents of a pat-
entable innovation of other firms investing in similar R&D. This problem is analogous to the 
over-exploitation of a fishery: individual fishermen do not take into account their effect on 
depleting the stock of fish and hence reducing the expected catch of other fishermen (Parry, 
2001). The prevalence of this ‘rent-stealing’ or ‘common-pool’ effect may result in an over-
investment in R&D. Overall, the empirical evidence suggests that the rent-stealing effect is 
dominated by the two other categories of market imperfections, notably by the positive 
spillover effect, leading to social rates of return to R&D that are substantially higher than the 
private rates of return (Griliches, 1992; Parry, 2001). Hence, in order to optimise social effi-
ciency, there seems to be scope for policy interventions to encourage technological innova-
tions (see Section 4.4 below). 

 
In addition, there are some market imperfections with regard to the diffusion and adoption of 
new technologies. These imperfections are due to the following causes (Jaffe et al., 2002, 2003 
and 2004): 
• Inadequate information. Information plays a particularly important role in the diffusion and 

adoption of technologies. Firstly, information is a public good that may be expected in gen-
eral to be underprovided by markets. Secondly, to the extent that the adoption of technology 
by some users is itself an important mode of information transfer to other parties, adoption 
creates a positive externality and is therefore likely to proceed at a socially sub optimal rate. 

• Agency problems. Related to inadequate information are so-called agency problems that can 
inhibit the adoption of superior technology. An example of an external agency problem 
would be a landlord/tenant relationship, in which a tenant pays for utilities, but the landlord 
makes decisions regarding which applications to purchase.15 Internal agency problems can 
arise in organisations where the individual or department responsible for equipment pur-
chase or maintenance differs from the individual or department whose budget covers utility 
costs. Agency problems are probably also part of the basis for the hypothesis that energy-
saving investments are ignored simply because energy is too small a fraction of overall costs 
to justify management attention and decision-making (Jaffe et al., 2003). 

                                                 
15  For instance, a builder or landlord chooses the level of investment in energy efficiency in a building, but the en-

ergy bills are paid by a later purchaser or tenant. If the purchaser has incomplete information about the magnitude 
of the resulting energy savings, the builder or landlord may not be able to recover the cost of such investments, 
and hence might not undertake them (Jaffe et al., 2004).  
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• Risk and uncertainty. The expected returns of adopting new technologies are risky and un-
certain. This uncertainty about future returns means that there is an ‘option value’ associated 
with postponing the adoption of new technology (Jaffe et al., 2002; Mulder, 2003). The 
prevalence of risks and uncertainties may also explain why purchasers of energy efficiency 
technologies appear to use relatively high discount rates in evaluating these technologies 
(which may further slow down their diffusion and adoption). 

• Capital market imperfections. Adoption of new technologies with significant capital costs 
may be constrained by inadequate access to financing, notably for households and small 
firms. And in some countries, lack of foreign exchange or other important barriers may in-
hibit the adoption of embodied/disembodied technology from other countries. 

• Adoption externalities. For a number of reasons, the cost or value of a new technology to 
one user may depend on how many other users have adopted the technology. In general, us-
ers will be better off the more people use the same technology. This benefit associated with 
the overall scale of technology adoption is sometimes referred to as ‘dynamic increasing re-
turns’ (Jaffe et al., 2004). These returns can be generated by learning-by-using, learning-by-
doing or network externalities. ‘Learning-by-using’ refers to the phenomena that an adopter 
of a new technology creates a positive externality for others, in the form of the generation of 
information about the existence, characteristics and the successfulness of the new technol-
ogy. The supply-side counterpart, ‘learning-by-doing’, describes how production costs tend 
to fall as manufacturers gain production experience (see Chapter 6). If this learning spills 
over to benefit other manufacturers it can represent an additional adoption externality. Fi-
nally, ‘network externalities’ exist if a product is technologically more valuable to an indi-
vidual user as other users adopt a compatible product (for example, telephone and computer 
networks). Altogether, the prevalence of adoption externalities and dynamic increasing re-
turns with regard to the adoption of a particular technology or system may result in a ‘lock-
in’ or ‘path dependency’ of such technology or system, meaning that once a particular stan-
dard has been chosen, the barriers of switching to another one may be prohibitively high 
(Jaffe et al., 2003). It should be noted, however, that increasing returns and technology lock-
in do not necessarily imply market imperfections, leading to social inefficiencies. In cases 
where they may, the question becomes which policy interventions, if any, can reduce such 
inefficiencies (see Section 4.4 below). 

 
The prevalence of market imperfections may explain certain characteristics of the diffusion of 
new technologies, which may be insightful for policy makers and analysts interested in under-
standing and optimising (induced) technological change. For instance, a major characteristic of 
the adoption process of new energy-saving technologies is that these technologies often diffuse 
slowly although they are efficient at current prices (the so-called ‘energy efficiency paradox’). 
This paradox can be explained by the prevalence of market imperfections - inadequate informa-
tion, uncertainties, agency problems, etc. - together with the incidence of adjustment costs or 
other factors. For instance, a major additional factor to explain the energy efficiency paradox is 
the so-called ‘complementary effect’ (Mulder, 2003; Mulder et al., 2003). This effect refers to 
the fact that different technologies to produce a similar product (e.g. electricity or steel) may not 
only differ with regard to their energy efficiency but also to other qualities such as differences in 
variable versus fixed cost structures, flexibility with respect to inputs (different technologies use 
different types of fuels or raw materials), or required managerial and organisational skills. Be-
cause of this variety in different qualities, it may be beneficial to use several (both old and new) 
technologies next to each other to produce a similar product. Hence, beside the incidence of 
market imperfections, this complementarity effect may offer an additional explanation for the 
energy efficiency paradox as many new technologies pass through a life cycle, in which they 
initially complement older technologies, and only subsequently (and often slowly) substitute for 
older technologies (Mulder et al., 2003). 
 
This specific explanation of the slow diffusion of energy saving technologies leads to a more 
general qualification to the factors affecting the process of (induced) technological change in the 
field of energy/environmental policies. Besides the interaction between market imperfections 
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and inducement factors - including (environmental) policies, (energy) prices, relative factor 
scarcities and market expectations - the process of technological change may be influenced by a 
variety of other factors such as the size of the market for new technologies, the available set of 
technological opportunities to be exploited, the role of technological networks and vested inter-
ests, or the achievement of other objectives besides profit or welfare maximisation (Criqui et al., 
2000; Luiten, 2001). These factors have to be accounted for when considering the policy impli-
cations of the interaction between market imperfections and inducement factors for the process 
of technological change in addressing environmental issues such as controlling global warming 
(see Section 4.4 below as well as similar sections on policy implications in Chapters 5 and 6). 
 

4.4 Policy issues 
Based on the findings of the previous sections, some policy issues will be indicated briefly be-
low, while some of these issues will be discussed further in Chapters 5 and 6. 
 
A major finding of the sections above is that the available evidence on induced technological 
change by environmental policies and/or higher energy prices seems to support the hypothesis 
that (future, stringent) climate policy will encourage the innovation and diffusion of new tech-
nologies that will address the issue of controlling global warming in a more cost-effective way. 
Some qualifications, however, can be added to this general finding. 
 
Firstly, the impact of climate policies on the promotion of emission abatement technologies will 
vary depending on the time period and type of technological change considered. For instance, in 
the short term this impact will most likely be higher on R&D investments in commercial appli-
cations and diffusion of minor, specific innovations that are already largely available (‘lying on 
the shelf’) than on general, major innovative breakthroughs (which may take a long-term set of 
incentives, including a supportive package of technological and climate policies). 
 
Secondly, climate policy may not only induce technological change but, in turn, the innovation 
and diffusion of more cost-effective abatement technologies may affect the optimal target, tim-
ing and/or instrument choice of climate policy. For instance, while some instruments - com-
pared to others - may be more efficient in controlling global warming in a dynamic than static 
sense, owing to this dynamic efficiency it may be beneficial to postpone abatement actions or to 
set a higher abatement target for a certain period. 
 
Thirdly, although climate policy may induce abatement technologies that are more cost-
effective, that does not necessarily imply that the costs of this policy are lower, depending on 
the definition of ‘costs’ and whether the abatement target is fixed or not. For instance, if the 
abatement target is based optimally on cost-benefit considerations, technological change may 
lead to a more stringent climate policy and, hence, to higher marginal and/or gross total abate-
ment costs, whereas net costs - i.e. after subtracting social environmental benefits of abatement - 
will generally, be lower, depending on the slope of the marginal cost-benefit curves of emission 
abatement. But even if the abatement target is fixed, induced technological change is not neces-
sarily welfare improving due to the potential adverse effects of climate policies on (i) the alloca-
tion of R&D resources to other types of technological change (‘crowding-out effect’) and (ii) 
the turnover of emission-intensive industries, which may reduce their R&D budgets and, hence, 
their future productivity (notably when R&D budgets are determined as a fixed percentage of 
output and hardly responsive to changes in climate policies). Therefore, although the available 
evidence points to substantial scope for induced technological change at the level of individual 
sectors or technologies, the implications of this finding for the macroeconomic cost of climate 
policy remains unclear (see Sue Wing, 2003, and other studies discussed in Chapter 5). 
 
Fourthly, the fact that climate policy will induce technological change does not say anything 
about which (mix of) instruments will be more or less cost-effective to do so. Actually, climate 
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policy may consist of a variety of instruments, usually distinguished between (i) ‘market-based 
instruments’ such as taxes, subsidies, tradable permits, and some types of information pro-
grammes, and (ii) ‘command-and-control’ regulations notably technology- or performance stan-
dard for production or end-use purposes. Although there seems to some (theoretical) evidence 
and consensus among several scientists - particularly economists - that, in general, market-based 
policy instruments are more efficient than command-and-control regulations (not only from a 
static but also a dynamic point of view), this consensus has been contended by other scientist. 
Moreover, there seems to be even less empirical evidence and consensus with regard to the dy-
namic efficiency of market-based instruments, including the ‘ranking’ of these instruments (i.e. 
which instrument is most efficient, second best, third best, etc.), or the optimal mix of climate 
policy instruments to achieve an abatement target most efficiently from both a static and dy-
namic point of view.16 
 
A final, but perhaps most important qualification is that, while climate policy may induce tech-
nological change, the impact of climate policy alone will be far from optimal as the innovation 
and diffusion of green technologies is generally faced by two related sets of market imperfec-
tions (Grubb and Ulph, 2002; Golombek and Hoel (2003); Jaffe et al., 2004). While climate pol-
icy may stimulate new technology as a side effect of internalising the costs of the environmental 
externality (i.e. the greenhouse effect), it does not address explicitly the other set of market im-
perfections directly related to technological change (such as the incidence of spillover effects 
and adoption externalities). On the other hand, simply relying on the promotion of technological 
change by technology policy alone is not enough as there must be a long-term, predictable and 
credible incentive in place that encourages the process of technological change to occur actually 
(Popp, 2002 and 2004c; Schmitz, 2001). Moreover, as shown recently by Buchner and Carraro 
(2004), international technological cooperation – without any commitment to emissions control 
- may not lead to a sufficient abatement of greenhouse gas concentrations. Therefore, a balanced 
set of climate and technology policies is necessary to promote the innovation and diffusion of 
emission abatement technologies and, hence, to address the issue of global warming in an opti-
mal way. 
 
More specifically, in order to stimulate the innovation of new technologies, a government can 
use several R&D policy instruments of which the performance can vary widely, depending on 
the specific incidence and relative importance of market imperfections or other constraints to 
promote innovation. These instruments and their performance include: 
• Granting patents. In theory, this instrument can deal effectively with the problem of imper-

fect appropriability of R&D by offering exclusive property rights to private innovators. In 
practice, however, the effectiveness of the patent system is often limited either because other 
firms can invent around the patent by developing their own imitations or because innovators 
prefer not to patent in order to avoid the disclosure of patent information to rival firms. On 
average, innovators appear to appropriate very roughly 50 percent of the full social benefit 
from new technologies (Griliches, 1992; Parry, 2001).17 

• Subsidising R&D ex ante, through research tax credits or research contracts to private or 
(semi-) public institutions, or awarding prizes ex post for new technologies. If there were no 
uncertainties over the costs and benefits of R&D, the optimal amount of R&D could be in-
duced by one of these instruments. In practice, however, there is usually a situation of 
asymmetric information as firms know more about the costs and benefits of their own R&D 
than the government. As a result, by using one of these instruments, the government may 
pay too much or too little and, hence, encourage R&D too much or too little.  
If asymmetric information is the most important market imperfection, a patent system can be 
preferable on efficiency grounds, while research contracts and prizes may be more efficient 

                                                 
16  For a review of studies on the dynamic efficiency of instrument choice in the field of environmental policies, see 

Jaffe et al. (2002, 2003 and 2004), as well as Parry (2001), Popp (2003a and 2003b), Stavins (2002), Driessen 
(2003), and Philibert (2003).  

17  Another disadvantage of patents is that they may discourage the diffusion of new technologies, including the spill-
over effects to other countries. 
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if imperfect appropriability is a more important problem (Parry, 2001). Moreover, besides 
the problem of asymmetric information, other potential disadvantages of subsidizing R&D 
are (i) the danger of ‘picking a winner’ and becoming ‘locked-in’ an inefficient technology 
system, (ii) the use of scarce public resources, and (iii) the opportunity of technological 
spillovers to other countries (which requires international cooperation of national R&D sup-
port in other to reduce this effect). 

• Encouraging joint research ventures among firms, for instance, by removing the threat of 
anti-trust prosecutions if firms openly collude over research strategies (rather than pricing 
strategies). To some extent, this would allow firms to internalise technology spillovers. 
However, joint research ventures may not be feasible when a large number of firms can 
benefit from new technologies (Parry, 2001; Grubb and Ulph, 2002). 

• Subsidizing education and training of scientists and engineers in appropriate areas. This in-
strument can be particularly effective if the supply of appropriately trained scientists and 
engineers is relatively inelastic in the short run, thereby avoiding the danger that any in-
creased expenditure on R&D in a given area will be at least partly consumed by an increase 
in wages rather than going to more research effort (Jaffe et al., 2003). Besides demanding 
scarce public resources, however, this instrument does not address the problem of imperfect 
appropriability or other imperfections in the R&D market. 

 
To conclude, a variety of R&D policy instruments may be used to promote technological inno-
vations cost-effectively. However, although the optimal mix of these instruments may depend 
on country- and technology-specific situations, unfortunately limited evidence is available to 
determine this policy mix in practice. 
 
In addition, a government can use a variety of policy instruments to promote the diffusion and 
adoption of new technologies, including: 
• Providing information, including technology demonstration and deployment. This instru-

ment will be most appropriate to promote technologies that appear cost-effective, but are not 
yet widely used due to imperfect information. On the other hand, it will be hardly appropri-
ate to deal with other market imperfections. 

• Setting command-and-control regulations. If implemented at an appropriate level, setting 
technology- or performance standards for production or end-use purposes may be very 
effective to force the diffusion of particular technologies, if only by removing ‘inferior’ 
technologies from the market (Jaffe et al., 2004). However, if set too low, they may be 
hardly binding, whereas if set too stringent, they may become very expensive and inefficient 
(including the danger of ‘carbon leakage’ or other forms of plant closure and relocation). 

• Subsidizing the adoption of green technologies (or taxing competing ‘dirty’ technologies). 
This instrument may be very appropriate to encourage the adoption of green technologies 
that at present are more expensive then competing ‘dirty’ technologies (or face up-front 
capital constraints), especially if these green technologies show major learning effects and 
resulting cost reductions to ‘break-even’ points within an acceptable time period. However, 
similar to subsidizing R&D (as discussed above), it raises some problems, notably (i) the 
danger of ‘picking a winner’ and becoming ‘locked-in’ a certain technology system, (ii) the 
scarcity of public resources, including the problem of a low efficiency of public expendi-
tures to subsidize the purchase of a new technology since customers who would have pur-
chased the technology even in the absence of the subsidy still receive it, and (iii) the prob-
lem that learning effects and the resulting cost reductions of deploying new technologies 
may spill over to other countries even if they have not contributed to finance the support of 
adopting and deploying new technologies. The first problem of ‘picking a winner’ can be 
reduced by means of a ‘technology neutral’ policy of portfolio diversification that supports a 
wide cluster of related technologies, but such a policy may be either very expensive or 
hardly effective, while sacrificing the increasing returns by focusing on a small number of 
technologies.  
The second ‘fiscal’ problem can be resolved by taxing dirty technologies (rather than 
subsiding green technologies), but such a policy may harm industrial competitiveness or 
social equity and, hence, it may be politically hard to accept. Finally, the ‘spillover problem’ 
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equity and, hence, it may be politically hard to accept. Finally, the ‘spillover problem’ may 
be reduced by international coordination of supporting the diffusion of green technologies, 
but such a policy may be time-consuming and hard to realize in practice. 

• Purchasing new technologies by the government itself. As the government (and, more gen-
erally, the public sector as a whole) is a very large landlord, vehicle operator and user of 
many other kinds of equipment, its decision to purchase certain technologies for its own use 
could have a significant effect on the rate of diffusion of that technology through the crea-
tion of niche markets and the achievement of any associated benefits of dynamic increasing 
returns (Jaffe et al., 2004). However, as purchasing new technologies at high market prices - 
compared to those of existing technologies - is similar to subsidizing the adoption of these 
technologies, it raises similar problems as discussed above. 

 
The discussion above on the technology policy instruments to encourage the innovation and dif-
fusion of technologies to control global warming raises the question whether a specific technol-
ogy policy in the field of climate change can be justified once the external costs of the green-
house effect have been fully internalised by climate policy alone, e.g. by means of emissions 
trading or taxing, thereby meeting the overall abatement target. In theory, such a specific tech-
nology policy is hard to justify as the greenhouse externality will be fully addressed by climate 
policy alone (with a ‘spillover’ or ‘side-effect’ on technological change) and, hence, only gen-
eral technology policies and instruments can be justified to deal with the other, remaining set of 
potential market imperfections in the field of technological change. In practice, however, some 
specific technology policies or instruments in the field of climate change may still be justified if 
this field is characterized by the incidence of specific market imperfections (compared to other 
fields of technology interests, for instance the prevalence of specific forms of imperfect infor-
mation or specific uncertainties due to the long-term, international character of controlling 
global warming). In addition, specific technology policies in the field of climate change may be 
justified - or even necessary - due to a lack of public resources, which raises the need to set pri-
orities with regard to the ex ante subsidization of technological innovation and diffusion. More-
over, some specific technologies - for instance solar PV or wind power - may be encouraged for 
a variety of other reasons besides controlling global warming. Hence, even if the abatement tar-
get is fully met by climate policy alone, the innovation and diffusion of these technologies may 
still be continued, justified by other policy considerations. 
 
Some of the policy issues outlined above, including their policy implications, will be discussed 
further in Chapter 5 and 6 below, dealing with an assessment of induced technological change in 
top-down and bottom-up approaches of climate policy modelling, respectively. 
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5. INDUCED TECHNOLOGICAL CHANGE AND SPILLOVERS IN 
TOP-DOWN APPROACHES OF CLIMATE POLICY MODELING 

5.1 Introduction 
As outlined in Chapter 2, top-down models are general macroeconomic models that analyse the 
economy - including the energy system - in highly aggregated terms, with hardly any detail on 
energy or mitigation technologies at the sector level. Such models are particularly suitable for 
analysing macroeconomic effects of climate policies, including the interactions and feedback 
effects at the intersectoral, (inter)national, regional or global level. Over the past decade, in-
duced technological change has been incorporated in these models, particularly by linking the 
accumulation of knowledge and experience to changes in climate policy. 
 
This chapter will assess the performance of some major top-down models with regard to en-
dogenising technological change and the implications for CO2 abatement policies. Section 5.2 
will first of all review the performance of individual studies using such models. Subsequently, 
Section 5.3 will compare and evaluate the performance of these studies. Finally, Section 5.4 will 
discuss some lessons and implications following from the assessment in this chapter. 
 

5.2 A review of top-down studies 
Goulder and Mathai (2000) 
A comprehensive and pioneering study in the field of analysing the impact of induced techno-
logical change (ITC) on climate policy is the work of Goulder and Mathai (2000). Their study 
employs analytical and numerical simulation models to explore the implications of ITC for the 
optimal design of CO2 abatement policies, notably for the design of optimal abatement and car-
bon tax profiles (i.e. the timing and level of carbon taxes and abatement). Goulder and Mathai 
derive these profiles under different model specifications for the channels through which knowl-
edge is accumulated (both R&D and LBD) and under two different policy optimisation criteria: 
the cost-effectiveness criterion of obtaining by a specified date and thereafter maintaining, at 
minimum cost, a given target for the atmospheric CO2 concentration; and the benefit-cost crite-
rion, under which they also choose the optimal concentration target, thus obtaining the benefits 
from avoided climate damages net of abatement costs.18 
 
In order to design the optimal CO2 abatement policies, Goulder and Mathai develop a simple 
(partial) ‘cost-function’ model in which a central planner decides on the optimal carbon tax and 
abatement patterns to minimise the discounted costs of abatement and knowledge investment 
subject to a carbon concentration constraint (Weyant and Olavson, 1999). ITC is incorporated in 
the abatement cost function (C) that depends on the level of abatement (A) and the stock of 
knowledge (H). As noted, the accumulation of knowledge may be either R&D of LBD based. In 
the first case, the evolution of the knowledge stock is a function of R&D investments, whereas 
in the second case it is a function of the level of abatement. While knowledge accumulation is 
costly in the R&D-based case, it is free in the LBD-based representation (Goulder and Mathai, 
2000; Löschel, 2002). 
 
The analytical model results of Goulder and Mathai reveal that the presence of ITC generally 
implies a lower time profile of optimal carbon taxes, i.e. compared to a situation with no ITC, 
the level of carbon taxation over a certain time path to meet the abatement target is generally 

                                                 
18 This is equivalent to minimizing the sum of abatement costs and CO2-related damages to the environment (Goul-

der and Mathai, 2000). 
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lower.19 The impact of ITC on the optimal abatement path varies, depending on the channel of 
knowledge accumulation. When knowledge is gained through R&D investments, ITC makes it 
preferable to shift some abatement from the present to the future. The reason is that ITC lowers 
the costs of future abatement relative to current abatement, making it more cost-effective to 
place more emphasis on future abatement. However, when the channel for knowledge accumu-
lation is LBD, the timing of abatement is analytically ambiguous. On the one hand, ITC makes 
future abatement less costly but, on the other hand, there is an added value effect to current 
abatement because such abatement contributes to LBD and helps reduce the costs of future 
abatement. Which of these two opposing effects dominates, depends on the specification (and 
underlying assumption) of the knowledge accumulation function (Goulder and Mathai, 2000; 
IPCC, 2001). If the LBD effect is strong enough, initial abatement rises (which in fact happens 
in most of the numerical simulations presented by Goulder and Mathai). 
 
When the government (the central planner) employs the benefit-cost policy criterion, the pres-
ence of ITC justifies greater overall (cumulative) abatement than would be warranted in its ab-
sence. This does not imply, however, that ITC encourages more abatement in every period. 
When knowledge accumulation results from R&D expenditures, the presence of ITC implies a 
reduction of near-term abatement, despite the overall increase in the scale of abatement over time. 
 
The illustrative numerical simulations of Goulder and Mathai reinforce the qualitative predic-
tions of their analytical model. The quantitative impact of ITC depends critically on whether the 
government is adopting the cost-effectiveness criterion or the benefit-cost criterion. This impact 
on overall abatement costs and optimal carbon taxes can be quite large in a cost-effectiveness 
setting but typically is much smaller under a benefit-cost criterion. This weak effect on the tax 
rate in the benefit-cost setting reflects the relatively trivial impact of ITC on optimal CO2 con-
centrations, associated marginal damages, and (hence) the optimal tax rate (Goulder and Mathai, 
2000). As for the optimal abatement path, the impact of ITC on the timing of abatement is very 
weak, but the effect on cumulative abatement over time (applicable in the benefit-cost case) can 
be very large, particularly when knowledge is accumulated via LBD. Although the work of 
Goulder and Mathai offers some valuable contributions and useful insights with regard to the 
analysis of the ITC impact on climate policy, it suffers from some limitations. As indicated by 
sensitivity analyses, the outcomes of their analytical and numerical simulation models depend 
highly on the specification, the parameterisation and the underlying assumptions of some criti-
cal functions such as the abatement cost function, the CO2 concentration damage function and 
the knowledge accumulation function. Goulder and Mathai assume that these model functions 
are perfectly known and that knowledge accumulation and technological change are determinis-
tic processes. Actually, however, these functions and processes are highly uncertain (which af-
fects the policy outcomes of ITC). Moreover, the empirical database for the parameterisation 
and calibration of these model functions is still very weak. 
 
Another major limitation of the model study of Goulder and Mathai concerns the assumed pres-
ence of a central planner, i.e. a single agent who actually represents a single source (a firm, a 
sector or a region) of CO2 emissions, abatement, knowledge accumulation and technological 
change. As a result, this type of model studies sidesteps the possibility of technological spill-
overs and related issues such as the problem of R&D appropriability and lack of R&D invest-
ment incentives.20 Similarly, as the model of Goulder and Mathai examines only a sole policy 

                                                 
19 However, under the benefit-cost criterion, this result depends on the assumption of a convex damage function in 

the atmospheric CO2 concentration (which Goulder and Mathai think most reasonable). If this function is assumed 
to be concave, the opposite result could be true in a benefit-cost setting. 

20 Goulder and Mathai acknowledge that they disregard the market failure associated with knowledge spillovers, i.e. 
the inability of firms to appropriate the full social returns on their investments in knowledge (Goulder and Mathai, 
2000, page 4, note 6). Nevertheless, on page 29 of their paper they discuss the sensitivity of a variable that governs 
the intertemporal knowledge spillovers. This latter term refers to the question whether knowledge accumulation 
today makes future accumulation easier (‘standing-on-shoulders’) or more difficult (‘fished-out’ pool). However, 
these are not real knowledge spillovers in the sense of an externality, i.e. the appropriability problem, as discussed 
in Section 2.2. 
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instrument available to the central planner (i.e. a tax on CO2 emissions), it does not explore the 
potential of other, additional instruments such as a R&D subsidy, a technological ‘command-
and-control’ standard or an optimal policy mix of these instruments. 
 
Finally, in the model of Goulder and Mathai, ITC comes in addition to (not instead of) autono-
mous technological change. This means that the ITC scenario is a more technology optimistic sce-
nario than the scenario without ITC. It would have been interesting to also explore the impact of 
replacing autonomous technological change with ITC (see Rosendahl, 2002, as discussed below). 
 
Goulder and Schneider (1999) 
In this study, Goulder and Schneider (1999) investigate the significance of ITC for the attrac-
tiveness of CO2 abatement policies. More specifically, they explore the impact of carbon abate-
ment policies on R&D expenditures and resulting ITC across different industries as well as the 
implications of this ITC for the total GDP costs of these policies. When analysing these implica-
tions, Goulder and Schneider made a distinction between the costs of a given abatement target 
(with a flexible carbon tax rate) and the costs of a given carbon tax rate (with a flexible abate-
ment level). In addition, they made a distinction between gross social costs (i.e. the social costs 
of carbon abatement without considering the environmental gains) and net social benefits (i.e. 
the environmental benefits of carbon abatement minus gross social costs). Moreover, they ana-
lyse these costs in both the presence and absence of knowledge spillovers and other inefficien-
cies in the R&D market. 
 
In order to analyse these cost implications, Goulder and Schneider construct a dynamic general 
equilibrium model in which abatement policies affect R&D investment of private firms and 
consequent changes in knowledge accumulation, technological innovations and input require-
ments across different industries. Notably, the model distinguishes between fossil-based and al-
ternative fuel-based industries, and energy-intensive materials and ‘other’ materials industries. 
For each representative firm in these industries, R&D investments result in knowledge accumu-
lation, which generates productivity-enhancing technologies and, hence, reduces the require-
ments for intermediate inputs, including conventional and alternative energy fuels, energy-
intensive and other materials, as well as other inputs such as capital or labour. Knowledge ac-
cumulation is costly and only partly appropriable. Intersectoral spillovers are represented in the 
model through the accumulation of knowledge capital enjoyed by all firms in a specific indus-
try. Although the model has been primarily developed to gain qualitative, analytical insights in 
the cost implications of ITC for abatement policies, it has been extended by some numerical 
simulations - based on data from US economic activities in 1995 - in order to explore these im-
plications more closely. 
 
The overall finding of Goulder and Schneider (1999) is that 'ITC generally makes climate poli-
cies more attractive'. In their study, however, the cost implications of ITC diverge significantly, 
depending on the different cases distinguished, namely the distinction between (i) the costs of a 
given carbon tax versus the costs of a given abatement target, (ii) the gross costs versus the net 
benefits of carbon abatement, and (iii) the abatement costs in the absence versus the presence of 
inefficiencies in the R&D market. More specifically, assuming no distortions in the R&D mar-
ket, the main findings of Goulder and Schneider are: 
• For a given carbon tax, the gross abatement costs in terms of GDP losses are higher in the 

presence of ITC. This is the consequence of the twin assumption that knowledge accumula-
tion through R&D investments is costly (i.e. such investments have an opportunity cost) and 
that the R&D market is in equilibrium (i.e. no distortions): the rate of return on R&D is 
equal across sectors and equals the rate of return in other sectors (Azar and Dowlatabadi, 
1999; Löschel, 2002). Although a carbon tax stimulates R&D in the low- or free-carbon en-
ergy industry - leading to cheaper abatement technologies and higher sectoral output - it 
tends to discourage R&D in other industries. Overall, the carbon tax results in a fall in the 
aggregate levels of R&D and GDP (relative to the baseline of no ITC). Hence, ITC studies 
that ignore these substitution or ‘crowding-out’ effects in the R&D market are likely to un-
derstate the gross GDP costs from a carbon tax. 
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• For a given carbon tax, the net benefits of abatement are larger in the presence of ITC, even 
though - as noted above - the gross costs are raised as well. Since a carbon tax induces 
cheaper abatement technologies, a higher optimal level of abatement can be achieved, re-
sulting in an increase of environmental benefits. Goulder and Schneider show that the addi-
tional benefits of the additional abatement outweigh the higher social costs. Overall, for a 
given carbon tax, net benefits of abatement are higher with ITC (compared to no ITC). 
Hence, ITC studies that ignore these environmental benefits are likely to overstate the net 
GDP costs from a carbon tax. 

• For a given abatement target, the required carbon tax and, hence, the gross cost are lower in 
the presence of ITC. Unfortunately, however, for this case Goulder and Schneider do not 
indicate the cost implications of potential ‘crowding-out’ effects in the R&D market (or of 
potential inefficiencies in this market, as discussed below). 

 
Finally, Goulder and Schneider show that the costs implications of ITC depend on the preva-
lence of inefficiencies in R&D markets prior to the introduction of CO2 policies. These ineffi-
ciencies result from a mismatch between the external benefits of knowledge spillovers from 
R&D and the value of subsidies to R&D, reflected in differences between the private and social 
(opportunity) costs of R&D. For instance, in case of relatively high spillovers but no subsidies 
to R&D in the conventional energy industry, prior to imposing a carbon tax, the marginal social 
value of R&D is relatively higher in that industry than in others. Hence, in this case, the oppor-
tunity cost of reallocating R&D towards other industries by imposing a carbon tax is especially 
high.21 
 
The results of Goulder and Schneider turn out to be quite sensitive to the parameterisation of 
their model, notably the substitution elasticities of their knowledge accumulation and production 
functions. In sum, whenever parameters are changed to make stock of knowledge more impor-
tant as a productive input, cheaper to acquire, or more easily substitutable which other factors, 
GDP costs of a given carbon tax rise and the costs of reaching given abatement targets fall 
(Goulder and Schneider, 1999). 
 
A major strength of the model of Goulder and Schneider is the distinction between different in-
dustries, which allows the model to begin to address the importance of heterogeneity of firms 
and investment incentives (Weyant and Olavson, 1999). Another strength is that the model cov-
ers explicitly intrasectoral (but no international) knowledge spillovers, and that the study offers 
some major qualitative insights in the cost implications of ITC for CO2 abatement policies. The 
study, however, does not explore the implications of the existence of knowledge spillovers for 
CO2 abatement and emission levels, while adequate quantitative estimates of the impact of ITC 
on the performance of climate policies are largely missing due to a lack of empirical data. 
Moreover, despite the long-term character of the analyses (covering 60-80 years), the model is 
deterministic - firms are assumed to have perfect foresight - and does not allow for uncertainty 
in the markets for ITC and carbon abatement.22 
 
Another limitation of the study of Goulder and Schneider is that it is only focused on R&D-
based ITC and ignores learning-by-doing (LBD). However, as acknowledged by Goulder and 
Schneider, a carbon tax may encourage LBD-based ITC related to the production of alternative 
(low or free carbon) fuels. On the other hand, the tax leads also to a reduction in output (and, 
hence, in cumulative output or ‘experience’) in other industries. This implies that in these other 
industries, the rate of technological change from LBD is lower than otherwise would be the 
case. Hence, climate policies that promote LBD in some industries also reduce the rate of LBD 

                                                 
21 For a discussion of the cost implications of similar and other cases of inefficiencies in R&D markets, see Goulder 

and Schneider (1999). Unfortunately, however, Goulder and Schneider hardly analyse the implications of spill-
overs (or other R&D inefficiencies) for the performance of climate policies. 

22 For a discussion of other limitations of the study by Goulder and Schneider (1999) and a comparison with similar 
studies in the field of ITC and climate policy, see Weyant and Olavson (1999); Kverndokk et al. (2001); Sue Wing 
(2003), Gerlagh (2003); Gerlagh and Van der Zwaan (2003) and Gerlagh et al. (2004). 
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in other industries. However, as recognised by Goulder and Schneider, industries most harmed 
by a carbon tax - namely, the conventional energy industries - tend to be mature industries 
where LBD effects could be fairly small. 
 
Nordhaus (2002) 
In order to analyse the impact of induced innovations on the performance of climate policies, 
Nordhaus (2002) incorporates R&D-based ITC in an updated version of his globally aggregated 
DICE model, called R&DICE.23 In the basic neoclassical DICE model, carbon intensity is af-
fected by substitution of capital and labour for carbon energy, i.e. an increase in the price of 
carbon energy relative to other inputs induces users to purchase more fuel-efficient equipment 
or employ less energy-intensive products and services. In the R&DICE model, on the contrary, 
carbon intensity is affected by induced technological change, i.e. an increase in the price of car-
bon energy will induce firms to invest in R&D in order to develop new processes and products 
that are less carbon intensive. Nordhaus assumes that there is an initial rate of improvement in 
carbon energy-efficiency, or a rate of reduction in the elasticity of output with respect to energy 
carbon inputs. ITC is incorporated in the model by letting this rate of energy-efficiency im-
provement vary in proportion to the additional R&D investments in the energy sector. Hence, 
the mechanism of carbon abatement is through either energy-efficiency improving R&D (in 
R&DICE) or factor substitution of capital and labour for energy inputs (in DICE). By compar-
ing the results of these two models, Nordhaus is able to compare the impact of ITC versus factor 
substitution in carbon abatement. 
 
The primary conclusion of Nordhaus (2002) is that ITC is likely to be a less powerful factor in 
influencing the performance of climate policies than substitution of energy by capital and la-
bour. Some other major findings and conclusions of this study include: 
• The reduction in carbon intensity in the ITC case is quite modest in the early decades. The 

reduction in emissions from ITC is about 6 percent over the first five decades and about 12 
percent after a century. At the beginning, the reduction in emissions from substitution is sub-
stantially larger than the reduction from ITC. The ‘cross-over point’, at which ITC becomes 
more important in reducing emissions than factor substitution, does not come until about 
2230 (although the exact timing is sensitive to the model specification). 

• The optimal carbon taxes for both the ITC and substitution cases are virtually identical as 
there is so little impact on the path of climate change. 

• The benefits of positive welfare implications of ITC policies are a fraction (about 40 percent) 
compared to those of substitution policies. This result, however, depends highly on the as-
sumption that the benefits from additional R&D investments in the energy sector (including 
spillovers) are fully offset by less R&D investments in other sectors. 

 
According to Nordhaus (2002), the primary reason for the small impact of ITC on the overall 
path of climate change is that R&D investments are too small to make a difference unless the 
social returns to these investments are much larger than the already supernormal returns applied 
in the analysis. R&D expenditures are about 2 percent of output in the energy sector, while con-
ventional investments are close to 30 percent of output. Even with supernormal returns, the 
small fraction devoted to R&D is unlikely to outweigh other investments. 
 
Another, perhaps more important explanation for the outcomes of Nordhaus’ study is its limited 
specification of ITC. The driving force for R&D investments and technological innovations is 
not so much emission abatement but rather energy conservation (i.e. improvements in energy 
efficiency). In fact, only departures from the assumed path of energy efficiency improvements 
are endogenised in the model, as there is only one energy input available characterised by a 

                                                 
23 DICE (Dynamic Integrated model of Climate and the Economy) is an integrated assessment model developed by 

Nordhaus to analyse the economics of global warming. An updated, eight-region version of this model is RICE-99 
(Regional Integrated model of Climate and the Economy). For a brief description of these models see Nordhaus 
and Boyer (1999) and Nordhaus (2002). 
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fixed (high) emission factor. Hence, the opportunity of developing and using alternative, low-
carbon fuels is omitted. A richer specification of ITC opportunities would definitely enhance the 
modelling and data complications of Nordhaus’ study but may result in a more significant im-
pact of ITC on the performance of controlling climate change. 
 
In addition, other limitations of Nordhaus (2002) are that it uses a highly aggregated (global) 
model, it assumes full crowding out of R&D, and it does not explicitly explore the implications 
of technological spillovers, for instance at the interregional level (although the study implicitly 
acknowledges the existence of sectoral spillovers by assuming that the social rates of return in 
R&D investments are far larger than the private rates of return).24 
 
Buonanno et al. 
The implications of ITC for climate policy have been a major topic for a group of scientists re-
lated to the Italian research institute Fondazione Eni Enrico Mattei (FEEM; see, for instance, 
Buonanno et al., 2000 and 2003; Galeotti et al., 2002 and 2003; Buchner et al., 2003; and 
Carraro, 2003). In order to explore these implications, they have developed a top-down model 
called FEEM-RICE.25 This model is an extended version of Nordhaus’ model RICE, the region-
ally disaggregated version of his DICE model (see above). 
 
Compared to Nordhaus’ RICE, which includes only exogenous technological change, FEEM-
RICE is characterised by the extension of two factors. The first extension concerns the introduc-
tion of endogenous technological change (ETC), affecting the overall productivity of capital and 
labour at the firm level. This is done by adding a stock of knowledge in each production func-
tion and by relating this stock to R&D investments of profit-maximising firms. Secondly in-
duced technological change (ITC) is introduced by allowing the stock of knowledge to affect 
also the emission-output ratio. Hence, more knowledge through profit-motivating R&D invest-
ments will help firms to increase their overall productivity (ETC) and to reduce their negative 
impact on the environment (ITC).26 Therefore, in contrast to Nordhaus, who assumes that en-
ergy R&D fully crowds out other R&D, Buonanno et al. assume that policy-induced R&D en-
hances both environmental ITC and overall factor productivity (i.e. no crowding out). 
 
In addition to these general factors, the FEEM-RICE model has usually been extended by spe-
cific factors depending on the application of the model to address specific issues. Examples of 
some major extensions concern: 
• Technological spillovers. In order to account for the international spillovers of disembodied 

technological change, a stock of world knowledge is introduced in both the production func-
tion and the emission-output ration equation of FEEM-RICE (Buonanno et al., 2003; Buchner 
et al., 2003; Carraro, 2003). 

• Emissions trading. In order to explore the potential impact of the Kyoto mechanisms, the op-
portunity of emissions trading has been introduced in the model by adding equations includ-
ing regional emission targets and the net demand for emissions permits (Buonanno et al., 
2000; and Galeotti et al., 2002 and 2003). 

                                                 
24 For comments on Nordhaus (2002) and a comparison with other studies see Weyant and Olavson (1999); Goulder 

and Schneider (1999); Goulder and Mathai (2000); Gerlagh (2003); Gerlagh and Van der Zwaan (2003) and Zon 
and Yetkiner (2003). 

25 This model is also often called ETC-RICE or ITC-RICE in order to indicate two sub-versions that account for the 
difference made by the FEEM authors between endogenous and induced technological change (see main text). For 
a detailed explanation of the model, see Buonanno et al. (2000) and 2003; Galeotti et al. (2003); Buchner et al. 
(2003) and Carraro (2003). 

26 As outlined in Section 2.3, this distinction in FEEM-RICE between ETC versus ITC as the (overall) rate and the 
(specific) direction of technological change diverts from the more general definition of these concepts in which 
they are highly synonymous, except that the term ETC is mostly used in a modelling context. 
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• Learning-by-doing. In addition to R&D-based ITC in the basic version of FEEM-RICE, 
Galeotti et al. (2003) have added LBD-driven ITC to the model by assuming that learning - 
i.e. free knowledge accumulation - occurs as a side effect of the accumulation of new physi-
cal capital (in the production function) and by allowing for the emission-output ratio to de-
pend upon this accumulated capacity. As a result, they have been able to compare the impact 
of R&D- versus LBD-based ITC, but they did not explore hybrid forms of knowledge forma-
tion, i.e. situations in which R&D and LBD are jointly present. 

 
FEEM-RICE is basically a single sector top-down model disaggregated to 6-8 regions in the 
world. Within each region, a central planner maximises the utility or net present value of per 
capita consumption by optimally setting the value of four strategic variables (investments, 
R&D, abatement effort and demand for permits), subject to individual resource and capital con-
straints and the climate module for a given emission abatement strategy of all global players.27 
 
The FEEM-RICE model has been used to explore the implications of ITC (and international 
spillovers) for a variety of short- and long-term issues, such as (i) the compliance costs of the 
Kyoto protocol, (ii) the effects on equity and efficiency of different degrees of restrictions 
(‘ceilings’) on emissions trading, or (iii) the consequences of the US withdrawal from the Kyoto 
protocol on the price of emission permits and abatement costs. Some of the main findings and 
conclusions of studies employing this model include: 
a) Direct abatement costs generally decrease when ITC is allowed for regardless the emissions 

trading regime (Buonanno et al., 2003). However, abatement and R&D are substitutes in 
general, and R&D efforts are increased when environmental technical change is endogen-
ised. Hence, according to Buonanno et al. (2003), the impact on total abatement costs, which 
include R&D costs, cannot be predicted a priori. In their simulations total costs of comply-
ing with the Kyoto protocol are higher with ITC.  

b) Technological spillovers reduce the incentive to carry out R&D, thus increasing the price of 
a permit (Buonanno et al., 2003). As for the impact on total costs, the reduced R&D effort is 
offset by a greater increase in abatement costs. According to Buonanno et al. (2003), 
‘though a priori unclear, in our simulations costs turn out to be often higher when spillovers 
are present’. 

c) When the environmental technology is endogenous, caps on CO2 emissions prompt R&D 
investments, and trigger the ‘engine of growth’. Kyoto mechanisms such as JI, CDM or 
emissions trading help in reducing the overall abatement costs, but actually slowdown the 
R&D accumulation of the most polluting high-income regions, while they spur Russia and 
Eastern European countries to strategically over-invest in R&D in order to provide the mar-
kets with a huge amount of permits, so performing large economic gains from emissions 
trading (Galeotti et al., 2002). 

d) Restrictions (or ‘ceiling’) on the use of the Kyoto mechanisms are likely to increase R&D 
expenditures (relative to GNP) in OECD countries, i.e. countries which are going to buy 
permits, but they reduce them in the Former Soviet Union (FSU), China and other develop-
ing countries - the seller countries - where the greatest stimulus to carry out abatement R&D 
comes from the possibility to trade emission permits without restrictions. But even if the 
presence of ceilings stimulates R&D-based ITC, the overall impact on abatement costs and 
economic growth appears to be detrimental. According to Buonanno et al. (2000), the ex-
planation is related to the relative importance of cost effects and innovation effects. In their 
model, the cost reduction achieved through unrestricted emissions trading seems to stimu-
late growth more than the increase of R&D-driven innovations achieved through trade ceil-
ings. Moreover, in the presence of ITC, the Kyoto mechanisms increase equity, while the 
highest equity levels are achieved without ceilings, both in the short and in the long run. The 
main reason is that developing countries receive important transfers from developed coun-
tries through the trading of permits, and this tends to reduce income inequalities. In addition, 

                                                 
27 As there is no international trade in the model, regions are interdependent through climate variables (Buonanno et 

al., 2000; and Buchner et al., 2003) 
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the introduction of R&D-based ITC offers developing countries the opportunity to use R&D 
strategically also to increase their sale of permits (Buonanno et al., 2000). Hence, these find-
ings do not support proposals to impose restrictions on emissions trading for efficiency or 
equity reasons in the presence of R&D-driven ITC. 

e) In the presence of ITC, the US withdrawal from the Kyoto protocol, by reducing the demand 
for permits and their price, lowers the incentives to undertake energy-saving R&D. As a 
consequence, emissions increase in other Annex I countries and feedback on the demand 
and supply of permits of these countries. As a result, the fall of the price of a permit after the 
US withdrawal is much smaller than the one identified in studies ignoring the impact of 
R&D-based ITC. Moreover, the presence of spillovers provides an additional contribution to 
this feedback effect. The US defection induces a strong reduction of domestic energy-saving 
R&D investments. This reduction spills over to other countries by reducing the world stock 
of knowledge, thus increasing the emission-output ratio resulting in an increase of the price 
of a permit. This feedback effect also partially offsets the initial fall of the permit price in-
duced by the US defection. Hence, the final equilibrium price of a permit is higher than the 
one usually estimated in studies ignoring induced technological innovations and spillovers 
(Buchner et al., 2003 and Carraro, 2003). 

 
A major strength of FEEM-RICE is that it is a regionally disaggregated model, accounting for 
ITC, international spillovers and/or (ceilings on) emissions trading. On the other hand, major 
limitations of this model concern its deterministic character - i.e. no uncertainty in ITC and en-
vironmental markets - and its restricted specification of the ITC function (i.e. modelling only 
one form of technology and not accounting for potential crowding-out effects). 
 
Gerlagh and Van der Zwaan 
An alternative top-down model to explore the role of ITC in controlling climate change has 
been developed by Gerlagh and Van der Zwaan. This macroeconomic model, called 
DEMETER, is a computable general equilibrium (CGE) model for the integrated assessment of 
global warming and induced technological change, characterised by the following features (Ger-
lagh et al., 2004; and Van der Zwaan and Gerlagh, 2002):28 
• The model includes two competing energy technologies, one of which has net zero CO2 emis-

sions. This feature allows for emission reductions to be achieved by a transition towards a 
carbon-free technology (the energy transition option) in addition to those resulting from the 
substitution of energy by capital and labour (the energy saving option). 

• It distinguishes old from new capital in such a way that substitution possibilities between 
production factors only apply to new capital stocks. This so-called ‘vintage’ or ‘putty-clay’ 
approach allows for different short and long-term substitution elasticities and can, in particu-
lar, describe a slow diffusion process. 

• The model includes learning-by-doing through the use of learning curves. In this way, a tran-
sition towards alternative technologies leads to lower energy production costs for these tech-
nologies, and thereby enhances their market opportunities and accelerates the transition and 
learning process. This feature of the top-down model DEMETER is based on bottom-up 
models such as MESSAGE or MARKAL (see Chapter 6).29 

• It includes niche markets, in which new technologies can relatively easily spread - even 
though costs are initially high - before these technologies are fully matured. 

 
Gerlagh and Van der Zwaan have used DEMETER to analyse the impact of a stringent climate 
policy aimed at limiting the global average atmospheric temperature increase to two degrees 
Celsius in the presence of ITC on a variety of issues, including (i) the impact on abatement 

                                                 
28 DEMETER stands for the DE-carbonisation Model with Endogenous Technologies for Emission Reductions. For 

a description and specification of this model see Gerlagh and Van der Zwaan (2003); Gerlagh et al. (2004); Van 
der Zwaan et al. (2002) and Van der Zwaan and Gerlagh (2003). 

29 In recent (preliminary) working papers, Gerlagh (2003) has analysed the impact of R&D driven ITC, while Ger-
lagh and Lise (2003) have explored the implications of both R&D- and LBD-based ITC. 
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costs, energy use, gross world product and aggregate consumption (Gerlagh and Van der 
Zwaan, 2003), (ii) the impact on the optimal timing of CO2 abatement, carbon tax levels and 
non-carbon subsidies (Van der Zwaan et al., 2002), or (iii) the impact of carbon taxes on emis-
sion levels when niche markets exist for new carbon-free technologies that experience LBD ef-
fects (Gerlagh et al., 2004). 
 
In general, Gerlagh and Van der Zwaan find that the inclusion of ITC in their model simulations 
has a large impact on the issues mentioned above (compared to scenarios excluding ITC as well 
as to other, similar ITC studies discussed in this chapter). More specifically, the main findings 
and conclusions of studies conducted by means of DEMETER concern: 
a) Including ITC implies substantially earlier emission reductions to meet the stringent climate 

policy constraint, compared to efficient reduction paths calculated with models that do not 
include ITC. This can be achieved by imposing a carbon tax on fossil-fuel technologies 
and/or subsidising investments in non-carbon energy technologies such as wind or solar en-
ergy (Van der Zwaan et al., 2002). 

b) During the entire simulation period, i.e. the 21st century, the optimal path of carbon taxes to 
meet the stringent CO2 emissions constraint is substantially lower, compared to the case 
without ITC and niche markets (Gerlagh et al., 2004). 

c) Over time, the induced transition towards a progressively cheaper non-carbon energy tech-
nology positively affects aggregate consumption and decreases the costs of the stringent 
climate policy. Overall cumulative abatement costs amount to only 0.06 percent of the net 
value of aggregate consumption, i.e. substantially lower than the estimated costs in case of 
no ITC or the costs estimated by similar studies (Gerlagh and Van der Zwaan, 2003). 

d) The numerical results on the costs and timing of emissions reductions appear most sensitive 
to the parameters that characterise (i) the learning curve of the non-carbon energy source, 
and (iii) the substitution possibilities between this energy source and the fossil-fuel energy 
source. Compared to the central parameters of the model simulations, a relatively low 
(high) learning rate for the non-fossil energy technology increases (decreases) abatement 
costs, and implies a delay (acceleration) of a transition towards the non-carbon energy 
source and, hence a delay (acceleration) of emissions reductions. Similarly, a relatively low 
(high) elasticity of substitution between the two energy sources decreases (increases) the 
estimated abatement costs and decreases (increases) the potential of a transition policy to-
wards the non-carbon energy source (Van der Zwaan and Gerlagh, 2002). Since limited 
empirical evidence is available to determine the proper value of the parameters, notably of 
the substitution elasticity, the empirical correctness of the numerical results generated by 
DEMETER is uncertain. 

 
Strong points of the ITC studies conducted by Gerlagh and Van der Zwaan are the inclusion of 
niche markets, LBD-curves and two energy technologies in their top-down model and the exten-
sive sensitivity analysis of their numerical results (which provides an indication of the uncer-
tainty of these results). On the other hand, a major limitation of their approach concerns its 
highly aggregated, global character, which excludes the analysis of policy actions and effects at 
the sectoral or regional level (including international spillover effects). Moreover, as indicated 
above, the numerical results of the model simulations depend highly on the underlying assump-
tions and choices for the various parameters, for which there are only limited empirical data, no-
tably with regard to the substitution of fossil-fuel energy sources for non-carbon energy tech-
nologies. 
 
Popp (2004c) 
In order to account for ITC in the energy sector, Popp (2004c) uses a modified version of Nord-
haus’ DICE model, called ENTICE (for ENdogenous Technological change). In this model ITC 
is channelled through R&D accumulations of knowledge that relates to improvements in energy 
efficiency. A distinguishing feature of ENTICE is that several R&D parameters have been cali-
brated by means of existing empirical studies on induced innovation in the energy sector. For 
instance, based on data of R&D expenditures by the US industries from 1972-1998, Popp as-
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sumes a partial crowding out effect of energy R&D on other R&D of 50 percent. This is a key 
difference compared to Nordhaus, who assumes that there is a fixed amount of total R&D 
spending in the economy (100 percent crowding out) and Buonanno et al., who assume that pol-
icy-induced R&D accumulations enhance both environmental ITC and overall factor productiv-
ity (no crowding out).30 
 
In first instance, Popp applies ENTICE to estimate the welfare costs of an optimal carbon tax 
policy in the presence of ITC.31 Ignoring ITC overstates these costs by 8.3 percent. However, 
cost-savings - rather than increased environmental benefits - appear to drive the welfare gains, 
as the effect of ITC on emissions and mean global temperature is small. In fact, after a century 
the temperature is just 0.04 percent lower when the role of ITC is included. 
 
Subsequently, however, Popp applies ENTICE predominantly to explore the sensitivity of his 
policy simulations to key assumptions on R&D parameters used to calibrate the model. The 
main findings and conclusions of this exercise with regard to the major R&D parameters in-
clude: 
a) The opportunity costs of R&D. Completely removing crowding out of R&D increases the 

welfare gain from ITC in the optimal policy simulation from 8.3 percent to 43.6 percent. 
Similarly, simulations with complete crowding out lead to just 1.8 percent gain from ITC. 
These results suggest that assumptions about the opportunity costs of R&D are a key factor 
in explaining differences in outcomes among ITC models. 

b) Deviation between the private and social rate of return. The base model sets the social rate 
of return on R&D to be four times greater than the private rate. Simulations removing this 
‘spillover gap’ - for instance by granting government R&D subsidies to correct this market 
failure - suggest that the returns on such subsidies could be quite significant as the welfare 
gain from ITC for the optimal policy improves from 8.3 percent to 14 percent. Hence, inter-
nalising spillovers enhances welfare when ITC is present. 

c) Decay rate. Many models of R&D assume that the stock of accumulated knowledge decays 
over time, due to obsolescence. The base model assumes no such decay. Not surprisingly, 
however, adding decay decreases the welfare gains from ITC, although the effect is not 
large. 

d) Return to energy R&D. In the base model, it is assumed that each dollar of energy R&D 
leads to $4 of energy savings. As expected, reducing potential energy savings in half re-
duces the potential welfare gains by about one-half. 

e) Elasticity of R&D. The base model assumes that the elasticity of energy R&D with respect 
to energy prices, including carbon taxes, is 0.35 in 2005 and declines over time. Doubling 
this elasticity in the optimal policy case does not have a large impact on welfare, partly be-
cause some of the gains are cancelled by potential crowding out. 

 
Although the results of the policy simulations and sensitivity analyses generated by ENTICE are 
quite insightful from a qualitative point of view, quantitatively they have to be treated with 
some prudence as the model is faced by some limitations. Firstly, by modelling the world as a 
single region, the ENTICE model simplifies policy dramatically as it ignores regional variation 
in innovative effects and technology diffusion. Secondly, the ENTICE model only includes in-
novation designed to improve energy efficiency but does not consider alternative, emission-free 
energy technologies. Finally, the ENTICE model does not include uncertainty (Popp, 2004c). 
 

                                                 
30  A recently updated version of ENTICE - called ÉNTICE-BR – includes a backstop technology (see Popp, 2004a). 
31 In an optimal climate policy, the marginal costs of carbon abatement are equal to the marginal environmental 

benefits of reduced carbon emissions. In addition, Popp (2004c) estimates the welfare costs of a more stringent 
policy, i.e. restriction global emissions to 1995 levels. 
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Rosendahl (2002) 
In his paper, Rosendahl (2002) investigates the implications of ITC for a cost-effective climate 
policy, if at least some of the induced learning effects are external to the emission source (i.e. if 
some of these effects spill over from a firm, industry or region to another firm, industry or re-
gion). In order to deal with this issue, the model structure used in this paper is based on Goulder 
and Mathai (2000). The main extensions are the inclusion of different emission sources and the 
presence of knowledge spillover effects. 
 
Rosendahl assumes that ITC occurs through current abatement efforts, i.e. through learning-by-
doing (LBD). By using simple numerical simulations, he investigates to what degree a cost-
effective climate policy differs from a free, global quota market approach, assuming external 
LBD effects in the industrialised (Annex I) region that spill over to the developing world. 
 
The results indicate that optimal carbon taxes may be significantly higher in the Annex I region 
than in the non-Annex I region. Hence, a cost-effective environmental policy does not imply 
equal taxes across emission sources, if external LBD effects exist (Rosendahl, 2002). Moreover, 
the Annex I share of global abatement may be higher in a cost-effective scenario than in a free 
quota market. In addition, global cost savings may be significant, at least if the international 
spillover effects are substantial. 
 
As outlined above, Goulder and Mathai (2000) showed that introducing internal LBD effects 
implies that the optimal carbon tax is reduced. The simulations by Rosendahl on the contrary, 
indicate that with complete spillover effects in Annex I, the optimal carbon tax in this region is 
increased for the next 70 years. Even with partial spillover effects, the optimal tax level is in-
creased for some decades. Hence, the impact of introducing LBD on optimal taxes depends cru-
cially on the degree of spillover effects (Rosendahl, 2002). 
 
Finally, Rosendahl shows that a fully flexible implementation of the Kyoto protocol may be far 
from cost-effective, as potential spillover effects of technological change in the industrialised 
world are not internalised in a free quota market. Some abatement in the non-Annex I region is 
optimal but the abatement share of Annex I should be significantly higher than what the free 
quota market generates. With diffusion of technology implemented into Rosendahl’s model, the 
full flexibility regime is actually more costly than a regime with no abatement in non-Annex I, 
but full flexibility within Annex I. This is in contrast with the study by Buonanno et al. (2000), 
who conclude that emissions trade restrictions are not cost-effective even with endogenous 
R&D investments. However, they incorporate neither spillover effects nor diffusion in their 
model, which are essential in the study of Rosendahl (2002). 
 
Bollen (2004) 
In his thesis, Bollen (2004) analyses the impact of R&D spillovers on the production and in-
come effects of carbon abatement. To estimate this impact, he uses Worldscan, i.e. a multi-
regional, multi-sectoral and applied general equilibrium model, which can simulate long-term 
growth and trade in the world economy. ITC is included in the model by assuming that at the 
sectoral level R&D expenditures grow at an equal rate with production, implying that the R&D 
intensities stay constant over time. Accumulation of the knowledge stocks leads to enhancing 
the overall factor productivity of a sector and thus to lowering its unit costs of production. 
Moreover, accumulation of knowledge in one sector spills over to other sectors (sectoral spill-
overs), as well as to similar or even other sectors in other regions (regional or international 
spillovers). 
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In addition to different technology cases, i.e. with or without ITC/spillovers, Bollen (2004) dis-
tinguishes between different policy regimes, notably with or without full emissions trading, as-
suming that Annex I countries meet their Kyoto targets for the year 2010 (and kept constant be-
yond 2010).32 Some of his major results include: 
• The inclusion of induced technological change and spillovers magnifies the production and 

income effects of climate policies such as the implementation of the Kyoto protocol. Al-
though these effects are generally negative (notably for Annex I regions such as Western 
Europe), they might be (slightly) positive for some sectors/regions (due to carbon leakage or 
other shifts in sectoral/regional production incurred by the Kyoto protocol). The magnifica-
tion impacts due to ITC/spillovers are usually not huge, but significant (and tend to rise over 
time, because of the accumulation of the knowledge stock). In Western Europe, for instance, 
the presence of ITC/spillovers magnifies the income losses of the Kyoto protocol by some 
5 percent in the year 2015 (in the case of no emissions trading) compared to 12 percent for 
the US (if they would participate in the Kyoto protocol).33 

• The sectoral spillovers constitute the largest factor for the R&D magnification effect on the 
income losses of carbon tax. This directly follows from the values of the estimated parame-
ters that link the knowledge stock to technological change. The second important factor is 
the accumulation of the own knowledge stock related to own R&D investments, and least 
important are the international spillovers. 

• Emissions trading alleviates the magnification effect. Hence, the existence of ITC and spill-
overs offers an additional incentive to high cost countries to argue for efficient solutions of 
the climate problem. 

 
The results of Bollen (2004) depend highly on some key assumptions of his model. Firstly, the 
model assumes that R&D intensities are fixed, implying that R&D expenditures are solely af-
fected by production changes. However, if it is assumed that R&D investments are based on the 
optimal allocation of resources in order to maximise the profits of the firm, these investments 
may respond positively to climate policies such as higher energy prices or carbon taxes even if 
these policies lead to a decline in sectoral production. As a result, the presence of ITC and spill-
overs may not magnify but rather reduce the negative income and production effects of abate-
ment policies. 
 
Similarly, R&D expenditures on energy saving technologies are not included in the analysis, 
while R&D intensities are set to zero for energy sectors, because for these sectors data are 
hardly available or almost zero. Therefore, this study does not deal with energy efficiency im-
provements due to ITC. However, as noted, the presence of ITC with regard to energy saving 
technologies may reduce the negative production and income effects of CO2 abatement. 
 
Sue Wing (2003) 
In his paper, Sue Wing (2003) investigates the potential for a carbon tax to induce R&D, and for 
the consequent induced technological change (ITC) to lower the macroeconomic costs of abat-
ing CO2 emissions. To deal with these issues, he uses a multi-sector computable general equilib-
rium (CGE) model of the U.S. economy. This model numerically simulates the effects of a car-
bon tax on the level and composition of aggregate R&D investments, the rate of accumulation 
of an aggregate stock of knowledge, and the inter-sectoral reallocation and intra-sectoral substi-
tution of the knowledge services derived there from. 
 

                                                 
32  In addition, Bollen (2004) distinguishes two other policy cases, including and excluding the participation of the 

US in the Kyoto protocol (both with and without full emissions trading).  
33 In some sectors/regions, the production or income effects of the Kyoto protocol are positive and, hence, these 

positive effects are magnified by the inclusion of ITC (due to the assumed fixed relationship between sectoral 
production and R&D investments), but often partly nullified by the (negative) spillover effects from other sec-
tors/regions. 
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A key feature of the model is that knowledge services are a homogeneous ‘super factor’ that 
substitute for all other commodities and factors - notably energy - in the economy. Hence, 
knowledge can move among sectors in response to relative price changes and differences in 
knowledge-energy substitution possibilities. ITC, therefore, results from two separate effects: 
• An ‘accumulation effect’ in which price-induced changes in R&D investments alter the rate 

of accumulation of the stock of knowledge and the aggregate endowment of knowledge ser-
vices. 

• A ‘substitution effect‘ in which price changes alter the allocation of the endowment of 
knowledge services among production sectors so as to reduce the costs of abatement. For in-
stance, due to a carbon tax or an emission constraint, knowledge is reallocated away from 
output-constrained fossil-fuel sectors toward input-constrained sectors where its marginal 
product is greater due to its ability to substitute for limited energy inputs. 

 
Contrary to other studies - such as Goulder and Mathai (2000) or Nordhaus (2002) - Sue Wing 
(2003) finds that the impact of ITC is large, positive and dominated by the above-mentioned 
substitution effect, which mitigates most of the welfare or ‘deadweight’ losses due to the impo-
sition of a carbon tax. More specifically, the losses in income and output incurred by the carbon 
tax are slightly exacerbated by the accumulation effects as these losses reduce aggregate R&D 
investments, causing a slowing of knowledge accumulation and the rate of technological pro-
gress. At the same time, however, the relative price effects of the carbon tax induce substantial 
intra-sectoral substitution and inter-sectoral reallocation of knowledge inputs, enabling the 
economy to adjust in a more elastic manner. The consequent increase in gross input substitut-
ability on the supply side of the economy ends up mitigating the bulk of the deadweight losses 
due to the tax. As the (positive) substitution effect far outweighs the (negative) accumulation 
effect, the overall impact of ITC on reducing the macroeconomic costs of CO2 abatement is 
positive and large (Sue Wing, 2003).34 
 
The outcomes of Sue Wing’s model simulations depend highly on the underlying assumptions 
and parametrical estimates affecting the accumulation and substitution effects of a carbon tax on 
ITC. If, as applies to Sue Wing’s study, the (direct) price effect of a carbon tax on R&D invest-
ments is less important than its (indirect) income or output effect, the accumulation effect of the 
carbon tax on ITC is, on balance, negative. However, depending on the parameterisation of the 
model, if the price effect turns out to be more important that the income effect (and the crowd-
ing-out effect of R&D is less than 1), a carbon tax may result in a positive impact on aggregate 
R&D investment and the accumulation of knowledge stocks (thereby further enhancing the 
positive substitution effect of a carbon tax on ITC). 
 
On the other hand, it may be questioned whether knowledge services are a homogeneous ‘super 
factor’ that substitute for all other commodities and factors in the economy (as assumed by Sue 
Wing). If knowledge turns out to be rather sector or commodity specific, its substitutability 
across the economy will be significantly restricted, thereby reducing the substitution effect of a 
carbon tax on ITC accordingly. 
 
Kverndokk et al. (2001 and 2003) 
In their papers, Kverndokk et al. (2001 and 2003) investigate the implications of the presence of 
ITC and spillovers for the optimal mixture and timing of two policy instruments, i.e. taxing car-
bon emissions and subsidising carbon-reducing technologies. To address this issue, they use a 
simple dynamic general equilibrium model, including learning-by-doing with regard to the car-
bon-reducing technologies. 
 

                                                 
34 Sue Wing adds that when the revenues of a carbon tax are recycled in order to subsidise R&D (or remove pre-

exiting taxes on R&D), the sign of the accumulation effect becomes also positive. This issue, however, belongs 
more to the ongoing debate on the potential ‘double dividend’ of a carbon tax rather that its impact on ITC. 
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Although quite simple, the analysis of Kverndokk et al. produces some insightful results. 
Firstly, if the existing/new energy technologies do not create any positive spillovers, a subsidy 
on these technologies can not be justified and, hence, the optimal policy to deal with a negative 
environmental externality such as CO2 emissions is just a carbon tax. 
 
Secondly, a mixture of a carbon tax and a technology subsidy can be justified in the combined 
case of a negative externality (i.e. climate change) and a positive externality, i.e. the presence of 
spillovers from technological innovations to control climate change. Kverndokk et al. (2003) 
show that in such a case a technology subsidy, combined with an optimal carbon tax, has a big 
impact on improving the cost efficiency of CO2 abatement. In addition, they show that the 
greatest return to learning-by-doing and, hence, the highest optimal subsidy occurs when a tech-
nology is first being applied. Moreover, compared to a uniform subsidy over time, the costs of 
CO2 abatement are significantly reduced under an optimal subsidy policy, i.e. a subsidy which is 
highest when a technology is first being applied but declines steadily thereafter (Kverndokk et 
al. 2003). 
 
However, in an earlier paper (Kverndokk et al. 2001), they found that even if there are positive 
spillovers from existing, carbon-reducing technologies, the granting of subsidies to these tech-
nologies may be questioned. Subsidising existing technologies may discriminate against new, 
less polluting innovations when spillovers from these innovations are not rewarded, resulting in 
a situation of ‘locking-in’ existing technologies and ‘crowding- or locking-out’ better perform-
ing innovations. This argument is strengthened in rigid policy schemes where it is hard to re-
move old subsidies, as well as to introduce new ones. Hence, in a second best world with uncer-
tainty or incomplete information about nascent technologies or with rigid policy schemes, sub-
sidising an existing technology amounts to ‘picking a winner’ (Kverndokk et al. 2001). 
 

5.3 Major differences in performance of ITC top-down studies  
The previous section has shown a wide divergence of the major results of top-down modelling 
studies on the impact of induced technological change and spillovers on the performance of cli-
mate policy (for a comparative summary, see Table 5.1 on pages 46-47). Whereas this impact is 
generally large and positive in some studies, it is relatively low or even negative in others. More 
specifically, with regard to the impact of ITC/spillovers on various performance indicators of 
climate policy, the major differences of the studies reviewed in the previous section include: 
• Abatement costs. The impact of ITC/spillovers on total abatement cost savings varies from 

‘large and positive’ (Sue Wing, 2000), ‘substantial’ (Gerlagh and Van der Zwaan) or ‘sig-
nificant’ (Popp, 2004c) to ‘relatively low’ (Nordhaus, 2002) or even ‘negative’ in terms of 
magnifying the income losses of carbon taxation policies (Bollen, 2004). In Goulder and 
Mathai (2000), this impact varies from ‘large’ under their cost-effectiveness (CE) scenario 
to ‘small’ under their benefit-cost (BC) scenario. 

• Carbon emissions. As most of the studies reviewed apply a CE scenario (with a given 
abatement target for a certain period), they have not analysed the impact of ITC on emission 
reductions or on similar environmental indicators such as carbon concentration ratios or 
changes in global warming or sea rise level. For those studies applying a BC scenario, this 
impact has varied from ‘high’ (Goulder and Schneider, 1999; Van der Zwaan et al. 2002) to 
‘low’ or ‘small’ (Nordhaus, 2002; Popp, 2004c). 

• Optimal timing of carbon abatement. When the channel for knowledge accumulation and 
ITC is learning-by-doing (LBD), it results in substantially earlier emission reductions in Van 
der Zwaan et al. (2002), whereas the optimal timing of carbon abatement is ambiguous in 
Goulder and Mathai (2000). However, if the LBD effect is strong enough, initial abatement 
rises (which in fact happens in most of the numerical simulations presented by Goulder and 
Mathai). On the other hand, when the channel for knowledge accumulation and ITC is 
R&D, it is preferable to shift some abatement from the present to the future (Goulder and 
Mathai, 2000). 
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• Optimal pattern of carbon taxation. Compared to a situation with no ITC, the presence of 
ITC implies that the level of carbon taxation over a certain time path to meet a certain 
abatement target is substantially lower in some studies (Goulder and Mathai, 2000; Van der 
Zwaan et al., 2002), whereas it is hardly changed for a long-term period in Nordhaus (2002) 
or even significantly higher in the Annex I region for the next 70 years (Rosendahl, 2002). 

• Efficiency effects of emissions trading. In a situation with ITC/spillovers, restrictions on 
emissions trading between Annex I and non-Annex I regions appear to be inefficient in 
Rosendahl (2002), whereas they are not cost-effective in Buonanno et al. (2000). 

 
Explaining the differences in modelling outcomes 
In general, the above-mentioned differences in the major results of top-down modelling studies 
on the impact of ITC/spillovers on the performance of climate policies can be explained by the 
methodology and data used. More specifically, besides differences in ITC channel (R&D versus 
LBD) and in policy optimisation criteria (CE versus BC), these differences in outcomes can be 
mainly attributed to the following factors: 
• The specification of some critical model functions, particularly the ITC or knowledge accu-

mulation functions. A key factor in explaining differences in outcomes among ITC top-
down models concerns the assumption about the ‘crowding-out effect’ or ‘opportunity cost’ 
of R&D. For instance, Popp (2004c) assumes a partial crowding out effect of energy R&D 
on other R&D of 50 percent compared to, on the one hand, Nordhaus (2002) who assumes 
that there is a fixed amount of total R&D spending in the economy (full crowding out) and, 
on the other hand, Buonanno et al. (2002 and 2003) who assume that policy-induced R&D 
accumulations enhance both overall factor productivity and environmental ITC (no crowd-
ing out). Moreover, whereas some studies assume that (all) R&D investments are either 
fully or partially fixed to output production (and, hence, may decline if output declines due 
to carbon taxation), other studies assume that (carbon-saving) R&D expenditures are re-
sponsive to price changes (and, hence, may increase due to carbon taxation). Finally, 
whereas some models are characterized by a poor or limited specification of their ITC func-
tion (with a limited set of energy/carbon-saving opportunities), other models have specified 
a broader ITC function covering a more extensive set of energy/carbon-saving technologies. 

• Model parameterisation and data use. Due to a lack of reliable R&D/ITC data, the studies 
reviewed have used a variety of data assumptions, sources, indicators and numerical simula-
tions in order to estimate the parameters and outcomes of their models. These outcomes are 
often quite sensitive to a few critical parameters such as the learning rate of new technolo-
gies (when LBD is the ITC channel), the elasticity of energy/carbon R&D investment with 
respect to energy/carbon prices (when R&D is the ITC channel), or the substitution rates be-
tween different energy sources or between energy and other production factors. 

• The role of spillovers. The role and significance of spillover effects as an explanatory factor 
of the model outcome varies widely in the studies reviewed in Section 5.2. Out of the ten 
sets of studies reviewed, three sets - i.e. those of Goulder and Mathai; Gerlagh and Van der 
Zwaan, and Sue Wing - do not consider spillovers at all (see Table 5.1). Two studies - i.e. 
Nordhaus (2002) and Popp (2004c) - do not analyse spillovers explicitly in their models, al-
though their presence is assumed implicitly (as it is assumed that the social rate of return on 
R&D is higher than its private rate, implying that abatement costs depend on technology 
policies addressing this market imperfection). In addition, two other studies - i.e. Goulder 
and Schneider (1999), and Kverndokk et al. (2001) - include sectoral spillovers in their (na-
tional) models, but these spillovers play a minor role in their analysis. Finally, two studies - 
Buonanno et al. (2002) and Rosendahl (2002) - include regional spillovers in their (global) 
model, while only one study - Bollen (2004) - covers both sectoral and regional spillovers in 
its WorldScan model. In the study of Buonanno et al. (2003), however, spillovers play a mi-
nor, less decisive role, whereas they play a major role in Rosendahl (2002) and Bollen 
(2004). In Rosendahl (2002), the prevalence of regional spillovers is crucial for the impact 
of LBD-channelled ITC on the efficiency of emissions trading and the optimal pattern of 
carbon taxation in the Annex-I region. For instance, Rosendahl shows that owing to the 
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presence of LBD and regional spillovers, restrictions of emissions trading may be efficient, 
in contrast to Buonanno et al. (2000), who do not include regional spillover and conclude 
that ceilings on emissions trading are inefficient. In addition, Rosendahl shows that owing to 
the incidence of LBD and regional spillovers, the optional carbon tax in the Annex-I region 
is increased for the next 70 years, in contrast to Goulder and Mathai (2000) who do not 
cover regional spillovers and conclude that due to the presence of LBD the optimal carbon 
tax is reduce over the whole time frame considered. Finally, as discussed in Section 5.2, 
Bollen (2004) finds that the presence of sectoral (or intra-industry) spillovers constitutes the 
largest factor for the R&D magnification effect on the income losses due to carbon taxation, 
while the second important factor is the direct effect on the own sectoral knowledge stock, 
and least important is the international spillover effect (i.e. almost zero)35. Hence, including 
the role of spillovers in ITC modelling studies may have a significant impact on the out-
comes of these studies. 

• The role of other modelling characteristics. In addition to the factors mentioned above, the 
differences in outcomes of the studies reviewed can be attributed to some other modelling 
characteristics varying among these studies such as (i) the scope or level of aggregation 
(sectoral, national, regional, global), (ii) the number and type of policy instruments covered, 
(iii) the stringency of the abatement target, (iv) the policy optimisation criterion used (i.e. a 
‘benefit-cost’ or cost-effectiveness’ framework) or (v) the time horizon considered (i.e. the 
impact of ITC is often more significant in the long term). 

 
Evaluation of ITC top-down studies: strengths and weaknesses 
As indicated above, top-down studies with regard to the impact of ITC/spillovers on the per-
formance of climate policy show a wide diversity in outcomes, methodologies, models and data 
used. Over the past decade, these studies have made substantial progress in analysing this im-
pact and, all together, they have offered some valuable contributions and useful insights to un-
derstanding this impact and its implications. The major strength of these top-down studies is 
that they are usually well-embedded in sound micro- and macroeconomic analysis, accounting 
for the economic behaviour of producers and consumers, the performance of markets and their 
imperfections, and the effects of policy interventions on this behaviour and performance, includ-
ing the feedback effects at the macroeconomic level. Nevertheless, in their present state, these 
top-down modelling studies still suffer from some weaknesses and limitations, including: 
• These studies often have a highly aggregated, abstract character with little technological de-

tail and a poor, limited specification of knowledge accumulation, induced technological 
change and spillover effects. 

• The empirical database for the parameterisation, calibration and estimation of the ITC model 
functions is still very weak. 

• These studies are often very deterministic and hardly account for the major uncertainties of 
long-term policy issues in the field of global warming and technological change. 

• These studies usually analyse only the impact of one ITC channel - mostly R&D, and occa-
sionally LBD - but not both channels simultaneously within one model. Moreover, these 
studies generally explore only one sole policy instrument - mostly a carbon tax, and occa-
sionally emissions trading or a technology subsidy - but not a mixture of climate and tech-
nology policies within one model. Therefore, it is usually hard to assess the full impact of 
ITC - including both R&D and LBD - on policy performance or to analyse and design a pol-
icy mix to optimise this impact. Finally, these studies usually analyse the impact of policies 
and ITC from a carbon abatement efficiency point of view but hardly from other socio-
political considerations. 

 

                                                 
35  A possible explanation for the major role of the intra-industry spillovers compared to the negligible role of the 

‘foreign’ spillovers may be that the level of regional aggregation is high in the WorldScan model and, hence, the 
variable intra-industry spillovers picks up what other, less aggregated studies might measure as foreign spillovers. 
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5.4 Major lessons and implications 
Despite the substantial progress made over the past decade, due to the present limitations of the 
ITC top-down studies and the diversity of their model outcomes, it is hard to draw firm lessons 
and implications from these studies. Nevertheless, a major lesson from these studies seems to be 
that even if climate policy induces technological change at the level of individual sectors or 
technologies, it does not imply that the social costs of such a policy will decline by necessity. 
There are two reasons for this (Sue Wing, 2003). The first reason concerns the opportunity cost 
or ‘crowding out effect’ of R&D expenditures, implying that the policy-induced response of 
carbon-saving innovations may result in reductions in other types of innovations, with adverse 
effects on aggregate knowledge accumulation and future productivity. The second reason is that 
climate policy may have a negative impact on output production and, hence, on R&D expendi-
tures tied to this production, thereby further lowering future productivity (Goulder and Schnei-
der, 1999; Sue Wing, 2003; Popp, 2004c; and Bollen, 2004). Hence, ITC studies that ignore 
these potential effects in the R&D market are likely to underestimate the gross social costs from 
climate policy. A major policy implication might be that, in order to reduce the potential crowd-
ing out effect of climate policy on R&D expenditures, this policy could be accompanied by 
other, technology or education policies to improve the supply of R&D facilities and well-trained 
scientists and engineers. 
 
Another lesson is that, when analysing or generating ITC, not only its impact on gross social 
costs should be considered but also its potential environmental benefits. Since climate policy 
may induce cheaper abatement technologies, a higher optimal level of abatement can be 
achieved, resulting in an increase of environmental benefits. These benefits may even outweigh 
potential higher social costs of such a policy (Goulder and Schneider, 1999). Hence, ITC studies 
that ignore these environmental benefits are likely to overstate the net social costs from climate 
policy. 
 
A final implication of the present state of ITC top-down studies is that further research is neces-
sary in order to draw more firm policy lessons and implications. The major suggestions for fur-
ther additional research include (i) improving the empirical database for ITC top-down model-
ling studies, (ii) improving the specification of the ITC model functions, for instance by broad-
ening or diversifying the set of energy/carbon-saving technologies covered by these functions, 
(iii) including both ITC channels simultaneously in top-down analyses, and expanding or diver-
sifying the number of policy instruments in these analyses, (iv) accounting for uncertainties in 
the field of global warming and technological change, and last but not least (v) disaggregating 
top-down modelling studies, including the analysis of spillover effects and diffusion of tech-
nologies at the (intra)sectoral and (inter)national level. 
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Table 5.1 Overview of top-down modelling approaches on the impact of induced technological change and spillovers on climate policy performance 
Study   Model ITC

channel 
Spillovers Policy  

instrument 
Focus of analysis Major results (impact of ITC) Comments 

Goulder and 
Mathai  
(2000) 

Partial cost-function 
model with central 
planner 

R&D 
LBD 

No Carbon tax Optimal carbon tax profile 
Optimal abatement profile 

Lower time profile of optimal carbon taxes 
Impact on optimal abatement varies depending on 
ITC channel 
Impact on overall costs and cumulative abatement 
varies, but may be quite large 

Deterministic 
One instrument 
High aggregation 
Weak database 

Goulder and 
Schneider 
(1999) 

General equilibrium 
multi-sectoral model 

R&D   

 

   

Yes
(sectoral) 

Carbon tax Abatement costs and 
benefits 

Gross costs increase due to R&D crowding-out 
effect 
Net benefits decrease 

Lack of empirical calibration 
Focus on U.S. 
Full ‘crowding out’ effect 

Nordhaus 
(2002) 

R&DICE 
(global IAM, Top-
down, neoclassical) 

R&D Implicit
(social > 
private rate 
of return) 

 

 Carbon tax Factor substitution versus 
ITC 
Carbon intensity 
Optimal carbon tax 

ITC impact is lower than substitution impact and 
quite modest in early decades 

Deterministic 
Full ‘crowding out’ of R&D 
High aggregation (global, one sector) 

Buonanno  
et al 
(various)a 

 

FEEM-RICE 
(6-8 regions, single 
sector) 
Top-down 

R&D (and 
occasionally 
LBD) 

Yes Rate of carbon
control 

 Compliance costs of Kyoto 
protocol 

Emissions 
Trading (plus 
ceilings) 

Impact of ET (+ restrictions)

Direct abatement costs are lower, but total costs are 
higher 
ET ceilings have adverse effects on equity and 
efficiency 

Includes international spillovers 
No crowding-out effect 

Gerlagh and 
Van der 
Zwaan 
(various)b 

 

DEMETER 
One-sector 
Two technologies 

LBD No Carbon tax Optimal tax profile 
Optimal abatement profile 
Abatement costs 

Costs are significantly lower 
Transition to carbon-free energy 
Lower tax profile 
Early abatement 

Results are sensitive to elasticity of 
substitution between technologies as well 
as to the learning rate on non-carbon 
energy 

Study Model ITC
channel 

Spillovers Policy 
instrument 

Focus of analysis Major results (impact of ITC) Comments 

Popp  
(2004c) 

ENTICE 
(based on Nordhaus’ 
DICE) 

R&D Implicit Carbon tax Welfare costs 
Sensitivity analysis of R&D 
parameters 

Impact on cost is significant 
Impact on emissions and global temperature is 
small 

Partial crowding out effect 

Rosendahl 
(2002) 

Builds on Goulder and LBD
Mathai (2000) 

  

 

   

   

Yes
(industrial 
and 
regional) 

 

Carbon tax  
Emissions 
trading 

Optimal carbon tax (or 
permit price) over time in 
two regions 
Optimal ET + restrictions 

ET restrictions are cost-effective 
Optimal carbon tax in Annex I region is increased 
with external spillovers  

Outcomes are sensitive to learning rate, 
discount rate and slope of abatement 
curve 
 

Kverndokk 
et al. (2001 
and 2003) 

Applied Computable 
General Equilibrium 
(CGE) model for 
small open economy 

LBD Yes
(sectoral) 

Carbon tax 
Technology 
Subsidy 

Optimal timing and mixture 
of policy instruments 
Welfare effects of 
technology subsidies 

Innovation subsidy is more important in the short 
term than a carbon tax 
Innovation subsidy may lead to 'picking a winner’ 
and ‘lock in’ 

 

Sue Wing 
(2003) 

Multi-sector CGE 
(U.S.) 

R&D No Carbon tax Macroeconomic costs
Allocation of R&D 
resources 

ITC impact is positive and large in reducing social 
costs 

Outcome is due to the substitution effect 
of homogenous knowledge factor 

Bollen 
(2004) 

WorldScan 
 (12 regions,  
12 sectors) 

R&D Yes
(sectoral, 
regional) 

Carbon tax (+ 
recycling) 

Income and production 
losses 

ITC magnifies income losses Sectoral R&D intensities stay constant 
overtime 
 

a)  See, for instance, Buonanno et al. (2000 and 2003); Galeotti et al. (2002 and 2003); Buchner et al. (2003); and Carraro, (2003). 
b)  See, for instance, Gerlagh and Van der Zwaan (2003); Gerlagh et al. (2003); Van der Zwaan et al. (2002) and Van der Zwaan and Gerlagh (2003). 
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6. INDUCED TECHNOLOGICAL CHANGE AND SPILLOVERS IN 
BOTTOM-UP APPROACHES OF CLIMATE POLICY 
MODELING 

6.1 Introduction 
As outlined in Chapter 2, bottom-up energy system models are usually characterised by a de-
tailed analysis of energy technologies, including information on the costs and other performance 
characteristics of these technologies such as the energy efficiency or GHG emissions per unit 
input or output. Since the mid-1990s, technological change has been endogenised in some of 
these models by means of so-called learning curves that relate the costs of specific technologies 
to the accumulation of knowledge and experience during the innovation and diffusion stages of 
these technologies. 
 
This chapter will assess the performance of some major bottom-up energy system models with 
regard to endogenising technological change and the implications for CO2 abatement policies. 
Section 6.2 will first of all review briefly some methodological issues, while section 6.3 will 
discuss some results of major bottom-up models of endogenous technological change. Subse-
quently, Section 6.4 will give an example of the potential impact of a specific learning technol-
ogy, namely carbon capture and sequestration, while Section 6.5 will discuss the impact of in-
duced technological change in the presence of emissions trading and global technological spill-
overs. Next, Section 6.6 will compare a bottom-up approach on the analysis of international 
technological spillovers with the approach conducted by Grubb et al. (2002b) as discussed in 
Chapter 3. Thereafter, Section 6.7 will compare and evaluate the performance of the bottom-up 
studies reviewed in the present chapter. Finally, Section 6.8 will discuss some lessons and im-
plications following from the assessment in this chapter. 
 

6.2 Some methodological issues 
Learning curves 
Learning or experience curves describe how the specific investment costs of a given technology 
are reduced through one or more factors representing the accumulation of knowledge and ex-
perience related to the R&D, production and use of that technology. These factors are the cumu-
lative installed capacity of a certain technology in the so-called one-factor learning curve 
(1FLC), as well as the cumulative R&D expenditures or knowledge stock with regard to that 
technology in the two-factor learning curve (2FLC).36 A typical one-factor learning curve can be 
expressed simply as: 
 
SCt = a × CCt

-b 
 
Where: 
SCt Specific cost in period t 
CCt Cumulative capacity in period t 
a Initial specific cost at unit cumulative capacity (t=0) 
b Learning index 
 

                                                 
36 For a more extensive discussion of one-factor and two-factor learning curves, see Seebregts et al. (1999 and 

2000), Kouvaritakis et al. (2000a and 2000b), Bahn and Kypreos (2003), Barreto and Kypreos (2004a), de Feber 
et al. (2003), Miketa and Schrattenholzer (2004), and Turton and Barreto (2004). 
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The learning index b can be used to calculate the progress ratio (PR = 2-b) or its complementary 
learning rate (LR = 1–PR = 1–2-b), i.e. the rate at which the investment cost of a technology de-
clines each time its cumulative capacity doubles. For instance, a progress ratio of 0.8 (or a learn-
ing rate of 0.2) means that the investment cost, per unit of a newly installed technology (e.g. a 
wind turbine) decreases by 20 percent each time its cumulative installed capacity is doubled. 
 
A major shortcoming of a one-factor learning curve is that it does not adequately account for the 
variety of factors explaining cost reductions of technological innovations - notably the role of 
R&D - and, hence that it does not offer adequate, relevant insights and implications for policy 
makers. Therefore, some studies have developed a two-factor learning curve, where cumulative 
capacity and cumulative R&D (or ‘knowledge stock’) are used to represent market experience 
(learning-by-doing) and knowledge accumulated through R&D activities, respectively 
(Kouvaritakis et al., 2000a and 2000b; Bahn and Kypreos, 2003; Barreto and Kypreos, 2003; 
Miketa and Schrattenholzer, 2004; and Turton and Barreto, 2004).37 
 
For a specific technology such a two-factor learning curve can be formulated as: 
 
SCt = a × CCt

-b × KSt
-c 

 
Where: 
SCt Specific cost in period t 
CCt Cumulative capacity in period t 
KSt Knowledge stock in period t38 
a Initial specific cost at unit cumulative capacity 
b Learning-by-doing index 
c Learning-by-searching index 
 
Instead of the learning-by-doing and learning-by-searching indexes, corresponding rates of 
learning-by-doing (LDR) and learning-by-searching (LSR) can be defined as follows: 
 
LDR = 1–2-b 

LSR = 1–2-c 

 

It should be noted that the LDR does not correspond to the learning rate (LR) described above 
for the 1FLC. In the 2 FLC, two variables - i.e. cumulative capacity and knowledge stock - are 
used to explain the cost trend that the 1 FLC tries to capture using only cumulative capacity as 
explanatory variable (Barreto and Kypreos, 2004b; Turton and Barreto, 2004). 
 
Cluster of technologies and learning spillovers 
Technologies often do not learn alone but in interaction with other technologies sharing com-
mon key components. In order to deal with this phenomenon of interdependent learning be-
tween technologies, the concept of clusters of technologies has been used in bottom-up energy 
modelling studies (Seebregts et al., 1999 and 2000; de Feber, 2002 and 2003; Barreto, 2003; 
Smekens, 2004; Turton and Barreto, 2004). A cluster of technologies is defined as a group of 

                                                 
37 Due to data and methodological problems (and the resulting disappointing performance of a 2FLC), an alternative 

approach to account for the role of R&D in the process of technological change has been suggested by de Feber et 
al. (2003). They propose to treat the impact of public R&D indirectly, i.e. exogenously to the model, by estimating 
the linear relationship between the learning rate of a 1FLC and the R&D intensity of a technology. R&D intensity 
is defined as the ratio between public R&D expenditures over a period and the turnover of a technology: R&D in-
tensity = (amount of R&D/amount of R&D + turnover). This approach assumes that increasing R&D intensity will 
increase the learning rate of technology. It has been applied in the MARKAL model in order to assess the impact 
of an additional R&D budget (an R&D shock) on the penetration of emerging technologies (de Feber et al. 2003; 
see also Barreto and Kypreos, 2004a). 

38  An alternative variable would be the cumulative R&D expenditures is period t (CRDt). The advantage of the vari-
able KSt is that it may account for the depreciation of the knowledge stock as well as for time lags between R&D 
expenditures and knowledge accumulation (Barreto and Kypreos, 2004a; and Miketa and Schrattenholzer, 2004) 
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technologies sharing a common essential learning component. This component, which can be a 
technology in itself, is called the ‘key technology’. For instance, the gas turbine is a key tech-
nology used in a cluster of technologies such as the integrated coal gasification power plant, the 
gas combined cycle power plant or the gas turbine CHP plant. Other examples of key technolo-
gies are fuel cells, photovoltaic modules, wind turbines, burners and boilers (Seebregts et al., 
2000). 
 
For a single technology, the investment costs may consist of several learning components as 
well as a non-learning part. The learning components may have different learning rates, while 
the share of these components in the total cost structure may vary between technologies. More-
over, the learning does not necessarily have to take place through a specific technology. Due to 
the clustering of technologies, spillovers of learning between technologies may occur, as related 
or complementary technologies benefit from the learning processes of each other. These cluster-
ing and spillover effects may result in the (further) deployment and lock-in of certain technolo-
gies, while others may be locked-out from the energy system (de Feber et al., 2002 and 2003, 
Barreto, 2003; Smekens, 2004; and Turton and Barreto, 2004; see also Section 6.3 below). 
 
Spatial dimensions of technological learning and spillovers 
The impact of endogenising technological change in bottom-up energy system models depends 
partly on the assumptions made with regard to the spatial dimensions of technological learning 
and spillovers. For instance, the cost reductions and, hence, the deployment or diffusion of new 
technologies depend partly on assumptions concerning the scale or domain of technological 
learning (global, regional or national) as well as on assumptions whether technological learning 
at the regional or national level spill over to other regions or countries. As will be illustrated in 
Section 6.3 below, including spatial spillovers of learning in a bottom-up energy system model 
offers the possibility that the imposition of emission constraints in a given region may induce 
technological change in other regions, even when they do not face emission restrictions them-
selves, or that the effects of emissions trading on the process of induced technological change 
may be altered (see also Barreto, 2001 and 2003; Barreto and Kypreos, 2000 and 2004a; and 
Barreto and Klaassen, 2004). 
 
Technological learning and uncertainty 
Uncertainty is a pervasive element in the use of energy models in order to assess the impact of 
technological learning in long-term emission scenarios. This uncertainty refers specifically to 
the progress or learning rates, resulting from methodological shortcomings and lack of adequate 
data to estimate these rates properly. But even if the historical values of the learning rates could 
be estimated adequately, their long-term future values would remain uncertain. Besides this spe-
cific ‘learning’ uncertainty, other uncertainties (with perhaps more impact) are present in bot-
tom-up energy models dealing with long-term emission scenarios and technical change. The 
most pronounced and often mentioned sources of uncertainty concern future energy demand, 
fuel resources, fuel prices, economic/environmental policies, discount rates and various tech-
nology characteristics such as the availability and efficiency of new technologies.39 In order to 
account for these uncertainties and to assess their potential impact on the model’s outcomes, a 
variety of methodological practices and techniques have been used such as developing different 
scenarios, sensitivity analyses, stochastic programming, or specific methods to analyse data un-
certainty in scientific models, e.g. the Monte Carlo Analysis (de Feber et al., 2003). 
 
Emission scenarios and policy cases 
Bottom-up energy system studies have used a variety of emission scenarios and policy cases to 
analyse the impact of endogenising technological change in their models. In addition to a refer-
ence or baseline scenario, for instance one of the emission scenarios developed by IPCC/SRES 
(2000a), these studies have assumed one or more policy constrained emission scenarios based 
on either the Kyoto protocol, the achievement of a long-term abatement target or the imple-
                                                 
39 For a discussion of these and other uncertainties in climate-energy-economic models see Van der Zwaan and See-

bregts (2004), Grübler and Gritevski (2002), and Grübler et al. (1999a and 1999b). 
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mentation of specific policy measures such as the imposition of an energy or carbon tax. More-
over, some studies have included emissions trading in their models at the regional/global level. 
By both including and excluding technological learning in these different emission scenarios 
and policy cases, these studies have been able to illustrate the impact of endogenising techno-
logical change in their models (see Section 6.3). 
 
Models used 
In order to endogenise technological change, a variety of bottom-up energy-system models have 
been used. The major versions of such models include: 
• ERIS (Energy Research and Investment Strategies). ERIS is a multi-regional bottom-up en-

ergy-systems optimisation model that endogenises technological change by means of learn-
ing curves. The model has been developed as a joint effort between the International Institute 
for Applied Systems Analysis (IIASA), the Paul Scherrer Institute (PSI) and the National 
Technical University of Athens (NTUA) during the EC-sponsored TEEM and SAPIENT re-
search projects. Originally, ERIS provided a simplified multi-regional representation of the 
global electricity generation system, including thirteen different electricity generation tech-
nologies in each region (of which six technologies were characterised by endogenous learn-
ing). Gradually, however, the model has been extended and restructured by, for instance (i) 
including a cluster approach to technological learning, (ii) adding the non-electric sector in a 
detailed and disaggregated way, (iii) adding an energy carrier production sector, including 
hydrogen (iv) incorporating non-CO2 emissions and abatement options, notably for CH4, 
N2O and SO2, and (v) including geological and terrestrial carbon storage (for details on 
ERIS, see Kypreos et al., 2000; Barreto and Kypreos, 2000; Barreto and Klaassen, 2004; and 
Tuton and Barreto, 2004). 

• MARKAL (acronym for MARKet ALlocation). MARKAL is a widely applied bottom-up, 
dynamic energy system model developed by the Energy Technology Systems Analysis Pro-
gramme (ETSAP) of the International Energy Agency (IEA). It actually covers a large fam-
ily of models for analysing the role of technology in energy planning and policy strategies to 
reduce the environmental impacts - notably of carbon emissions – from energy and materials 
consumption. In addition to the standard linear programming model, which provides exten-
sive detail on energy supply and demand technologies, the MARKAL family has been 
enlarged over the past two decades by models to deal with material flows, uncertainties, mul-
tiple regions, emissions trading, macroeconomic feedback effects, and endogenous energy 
demand responsive to price changes (Seebregts et al., 2001). Experience from MARKAL 
models with endogenous technological change has been gained by including learning pa-
rameters for a selected set of technologies in a compact multi-regional model of the global 
energy system (Barreto, 2001; Barreto and Kypreos, 2004a) as well as in a large-scale model 
covering Western Europe (Seebregts et al., 2000; de Feber et al., 2003; Smekens, 2004). 

• MERGE (Model for Evaluating the Regional and Global Effects of GHG reduction policies). 
MERGE is a multi-region, multi-technology model for analysing regional and global climate 
policy issues. It actually combines a top-down and bottom-up approach of climate policy 
modelling. The top-down part of MERGE covers the macroeconomic linkages between the 
demand side of the energy system and the rest of the economy, while the bottom-up part 
provides some technological detail of the energy supply sector in a given region, particularly 
the generation of electricity and the production of non-electric energy (fossil fuels, synthetic 
fuels and renewables). Originally, MERGE has been developed in the 1990s at the Stanford 
University by Manne et al., who recently have added endogenous learning-by-doing to a few 
power generating technologies of the model (see, for instance, Manne and Richels, 2004 and 
2003, or Manne and Barreto, 2004).40  

 
 
 

                                                 
40  For a description and documentation of MERGE, see the website: http://www.stanford.edu/group/MERGE. 
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• Similarly, Bahn and Kypreos of the Paul Scherrer Institute (PSI) have also added endoge-
nous technological learning (ETL) to a new version of MERGE (called MERGE-ETL), 
through either a one-factor learning curve (Kypreos and Bahn, 2003a) or a two-factor learn-
ing curve (Bahn and Kypreos, 2002 and 2003).41 

• MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environ-
mental Impact). MESSAGE is a bottom-up system engineering optimisation model used for 
medium- to long-term energy system planning and policy analysis. It determines how much 
of the available resources and technologies are actually used to satisfy a particular end-use 
demand, subject to various constraints, while minimising total discounted energy system 
costs. MESSAGE has been developed by the International Institute for Applied Systems 
Analysis (IIASA). It exists in many versions, including one that provides a wide variety of 
detailed information at both a multi-technology and multi-regional level, one that is linked to 
a top-down macroeconomic model (MESSAGE-MACRO), one that incorporates endoge-
nous technological learning (ETL), one that accounts for uncertainties, and versions that 
merge ETL with uncertainties or ETL with MESSAGE-MACRO (for details, see Messner, 
1997; Grübler and Messner, 1998; Grübler et al., 1999a and 1999b; and Riahi et, al., 2004). 

 

6.3 Some illustrative results 
Learning rates 
In order to explore the impact of induced technological change, bottom-up energy system mod-
els have used a variety of learning rates for different individual energy technologies (notably 
electricity generating technologies; see Table 6.1). These rates have been either assumed or es-
timated econometrically, based on expert knowledge or empirical studies.42 Estimates of learn-
ing rates may show a large range of values, even for the same technology, depending on the 
methodology and data used. For instance, Table 6.1 shows that the estimates of the learning rate 
for wind power vary from 8 to 15 percent, and for solar PV from 18 to 28 percent.43 On the 
other hand, the variance of the learning rate for other technologies mentioned in Table 6.1 is of-
ten smaller, while there seems to be some consensus that this rate is relatively low for new nu-
clear (4-7%), and for advanced coal-based power generating technologies, notably the inte-
grated, combined cycle gasification system (5-7%). 

Table 6.1 Learning rates of electricity generating technologies in bottom-up energy system 
models: one-factor learning curve  

[%] ERIS MARKAL MERGE-ETL MESSAGE 
Advanced coal 5 6 6 7 
Natural gas combined cycle 10 11 11 15 
New nuclear 5 4 4 7 
Fuel cell 18 13 19 - 
Wind power 8 11 12 15 
Solar PV 18 19 19 28 
Source: Messner (1997), Seebregts et al. (1999), Kypreos and Bahn (2003a), and Barreto and Klaassen (2004). 
 

                                                 
41  In MERGE-ETL, endogenous technological progress is applied to eight energy technologies: six power plants 

(integrated coal gasification with combined cycle, gas, turbine with combined cycle, gas fuel cell, new nuclear de-
signs, wind turbine and solar photovoltaic) and two plants producing hydrogen (from biomass and solar photo-
voltaic). Furthermore, compared to the original MERGE model, Bahn and Kypreos (2002 and 2003) have intro-
duced two new power plants (using coal and gas) with CO2 capture and disposal into depleted oil and gas reser-
voirs. 

42  For a review of the literature on learning curves, including 42 learning rates of energy technologies, see McDon-
ald and Schrattenholzer, 2002. 

43  For a discussion and explanation for similar (and even wider) variations in estimated learning rates for wind 
power, see Söderholm and Sundqvist (2003) and Neij et al. (2003a and 2003b). 
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The learning rates in Table 6.1 are all derived for one-factor learning curves. Similar rates for 
two-factor learning curves (2FLCs) are more scarce. Some available estimates of learning rates 
for energy technologies derived from 2FLCs are presented in Table 6.2.44 For each technology 
and model considered, the learning-by-searching rate (LSR) is significantly lower than the 
learning-by-doing rate (LDR). Note that the LDRs used by the MERGE-ETL model are similar 
to the comparable learning rates from the 1FLCs while the LDRs used by the ERIS model are 
even higher than the comparable 1F learning rates (although one would expect intuitively that 
the LDRs would be lower than the comparable 1F learning rates as the LDRs are designed to 
explain only part of the specific technology cost decreases explained by conventional 1F learn-
ing rates). 
 
Investment costs 
When considering induced technological change, the specific costs of a given technology de-
crease with the accumulation of knowledge that occurs through the increase of the cumulative 
installed capacity (in 1 FLC), and through as well as the increase of the cumulative R&D ex-
penditures (in the 2FLC). As an illustration, Table 6.2 reports on the reduction of specific in-
vestment costs as a learning process for electricity generating technologies over the period 
2000-2050 in both a baseline scenario and a CO2 mitigation scenario.45 For instance, in case of a 
1FLC, the investment costs for a fuel cell power plant decreases from 5096 US$/kW in 2000 to 
884 US$/kW in 2050 under the baseline scenario and even to 856 US$//kW under the mitigation 
scenario (as the total installed capacity of fuel cell power plant increases even further under the 
latter scenario). Owing to the accumulation of R&D expenditures, these costs decline even more 
in case of a 2FLC, i.e. to 826 and 819 US$/kW in 2050 under the baseline and emission sce-
nario, respectively. Note that in case of the 1FLC baseline scenario the investment costs of a so-
lar PV plant do not decline (as no capacity is installed under this scenario), while under the 
mitigation scenario these costs are higher in the 2FLC case than in the 1FLC (as the other power 
plants benefit more from R&D spending than solar PV, resulting in less installed capacity of so-
lar PV in case of the 2FLC mitigation scenario). 

Table 6.2 Learning rates of electricity generating technologies in bottom-up energy system 
models: two factor learning curves 

 
 

ERIS 
 

MERGE-ETL 
[%] LDR 

 

LSR LDR LSR 
Advanced coal 11 5 6 4 
Natural gas combined cycle 24 2 11 1 
New nuclear 4 2 4 2 
Fuel cell 19 11 19 11 
Wind power 16 7 12 6 
Solar PV 25 10 19 10 
Source: Barreto (2001). Barreto and Kypreos (2004b), and Bahn and Kypreos (2003). 
 
Mix of primary energy use 
As illustrated in Table 6.3, accounting for induced technological chance (ITC) implies a decline 
of energy production costs over time, as knowledge and experience in the different learning 
technologies builds up. In other words, the production factor energy becomes less expensive 
over time and, thus, it can substitute partly for other production factors such as labour or capital. 
Consequently, as illustrated by Bahn and Kypreos (2003), primary energy use is higher in the 
baseline and mitigation scenarios including ITC compared to similar scenarios excluding ITC. 
                                                 
44  For additional estimates of learning rates from 2FLCs, see Kouvaritavis et al. 2000a; Söderholm and Sundqvist, 

2003; and Miketa and Schrattenholzer, 2004. 
45  According to the baseline scenario, the global amount of energy elated CO2 emissions increases from 6.55 GtC in 

1990 to 15.6 GtC in 2050, whereas the mitigation scenario implies a reduction of these emissions to a level of 10 
GtC in 2050 (Bahn and Kypreos, 2003). Similar illustrations of cost reductions for learning technologies are re-
ported by Messner (1997), Seebregts et al. (2000), and Nakicenovic (2002). 
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Comparing the 1FLC and 2FLC cases, primary energy use is lower under the 2FLC baseline 
scenario (B2F) compared to the 1FLC baseline scenario (B1F), whereas the opposite takes place 
under the mitigation scenarios (i.e. primary energy use is higher in M2F than M1F). This is due 
to opposite variations in overall GDP (see Bahn and Kypreos, 2003, and the discussion below 
on the impact on abatement costs). Moreover, the reduction of primary energy use due to carbon 
mitigation is lower when considering ITC: 15% reduction in the mitigation scenario compared 
to the baseline scenario (both excluding ITC), 9% in the M1F case compared to B1F, and only 
7% in M2F compared to B2F (Bahn and Kypreos, 2003). 

Table 6.3 Reductions of specific investments costs as a learning process for electricity 
generating technologies over the period 2000-2050 (in US dollars at constant 2000 
prices per unit installed capacity 

  
 

Baseline scenario 
 

Mitigation scenario 
 2000 2050 2050 
[US$/kW]  1FLC 

 

2FLC 1FLC 2FLC 
Advanced coal 2020 1355 1254 1349 1252 
Gas combined cycle 713 513 503 514 505 
New nuclear 3999 2454 2366 2460 2371 
Fuel cell 5096 884 826 856 819 
Wind power 887 564 525 562 520 
Solar PV 6075 6075 5022 1775 5022 

Source: Bahn and Kypreos (2003). 

 
ITC affects also the primary energy mix, as illustrated by Bahn and Kypreos (2003). Firstly, the 
share of fossil fuels decreases, notably coal in the baseline cases and oil in the carbon mitigation 
cases (where coal is already significantly reduced compared to the baseline). Secondly, the 
share of nuclear increases, particularly in the baseline cases. Thirdly, the share of renewables 
increases, especially biomass and wind, to reach 22 percent by 2050 in the M2F case. Finally, 
these trends are stronger when considering also knowledge accumulated through R&D spending 
(i.e. the 2F cases). 
 
Electricity generation: output and technology mix 
The impact of ITC on primary energy use in the cases mentioned above is similar on electricity 
generation, i.e. it is higher in the learning (ITC) cases compared to the no-ITC cases. Electricity 
generation is also always higher in the 2F cases compared to the 1F cases. This means in par-
ticular that in the B2F case, where primary energy use is slightly lower than in B1F, electricity 
substitutes partly for non-electric energy following relative price changes in energy markets. 
Moreover, similar to primary energy use, the reduction of electricity generation due to carbon 
mitigation is lower when considering ITC. Indeed, power generating costs decrease over time 
for learning technologies, as do non-electric energy production costs. Electricity (and non-
electric energy) can thus substitute partly for capital and labour as production factors (Bahn and 
Kypreos, 2003). 
 
With regard to the technology mix for generating electricity in the cases mentioned above, ITC 
favours the deployment of the advanced learning power plants, largely at the expense of using 
conventional coal and other, non-learning technologies. In the baseline learning cases, these 
plants include particularly integrated coal gasification with combined cycle (IGCC), gas com-
bined cycle (GCC), new nuclear (NNU) and wind turbine (WND), whereas in the mitigation 
cases they refer mainly to GCC, NNU and WND (Bahn and Kypreos, 2003). 
 
The above findings regarding the power generating technology mix in the study of Bahn and 
Kypreos - who used the MERGE-ETL model - confirm largely similar results of a previous 
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study by Messner (1997), applying the MESSAGE model. However, in contrast to Bahn and 
Kypreos (2003), the output demand for generating electricity is fixed in the study of Messner, 
while she compares the technological learning case with two alternative ways of modelling 
technological change. The first variant, the ‘static’ case, is the least realistic of the three cases 
(and comparable to the ‘no-ITC’ or ‘no-learning’ case of Bahn and Kypreos). In this variant, it 
is assumed that the investment costs of the new technologies remain at their 1990 levels over the 
entire time horizon. The second variant, the ‘learning’ case, assumes that the investment costs of 
the new technologies decline over the years 1990-2050 according to the progress ratios provided 
in Table 6.1 for the MESSAGE model.46 Finally, the ‘dynamic’ case assumes the same degree 
of cost reductions over the period 1990-2050 as in the ‘learning’ case, but the reductions are ex-
ogenous (‘autonomous’), occurring at continuous rates between 1990 and 2050. This dynamic 
case corresponds to the most common approach of dealing with technological change in long-
term energy system modelling (Nakicenovic, 2002). 
 
According to the static case of Messner (1997), the technology mix of global electricity genera-
tion in 2050 relies primarily on established technologies such as standard coal and nuclear 
power plants. In the dynamic case, however, these standard technologies are largely replaced by 
natural gas combined-cycle, new nuclear, solar and wind technologies. As these latter technol-
ogy improvements are exogenous in the dynamic case, the shift in investments from traditional 
to new technologies changes in line with the evolving cost reductions. Compared to the dynamic 
case, the technology mix in the year 2050 is hardly different in the learning case, except a slight 
shift from new nuclear and solar thermal systems to solar PV systems. This outcome is hardly 
surprising as a similar structure in cost reductions for the new technologies in the year 2050 has 
been assumed for both cases. In contrast to the dynamic case, however, in the learning case in-
vestments in new technologies have to be made up-front, when these technologies are much 
costlier than the conventional alternatives, if they are to become cheaper with cumulative ex-
perience as installed capacity increases. Hence, in the decades preceding the year 2050, there 
might be a significant difference between the dynamic and learning cases, depending on the tim-
ing and speed of investments in new, promising technologies (Messner, 1997; Nakicenovic, 
2002; see also Grübler and Messner, 1998 and Grübler et al., 1999a and 1999b, as well as the 
sections below on the timing of abatement investments). 
 
Clustering of learning technologies 
The importance of clustering learning technologies has been illustrated by the Energy research 
Centre of the Netherlands in a MARKAL model for Western Europe (Seebregts et al. 2000; de 
Feber et al., 2002; Smekens, 2004). The database of this model covers detailed information of 
some 500 technologies used in different supply and demand sectors of the energy system. In a 
first set of experiments, clustering was restricted to 28 learning technologies, of which 21 tech-
nologies in the power generating sector and 7 end-use technologies in the transport sector (See-
bregts et al. 2000). These 28 technologies were clustered to 5 ‘key technologies’: wind turbines, 
solar PV modules, fuel cells, gasifiers, and gas turbines. The cluster fuel cells combines 3 tech-
nologies applied in the power sector and 7 applications in the transport sector, while the other 
clusters refer to technologies applied in the power sector only. 
 
In the first run by the MARKAL model, the fuel cell transport applications were not included in 
the cluster of fuel cell power technologies. As a result, fuel cells become not cost-effective over 
the period 1990-2050 and, hence, they are ‘locked-out’ from the technology mix to generate 
electricity during this period (both in the baseline and carbon mitigation scenarios). In the sec-
ond run, however, when the fuel cell technologies in the power and transport sectors are clus-
tered to one key technology, fuel cell applications in the power sector become cost-effective in 
the carbon mitigation scenario - due to the widespread application of fuel cells in the transport 
sector - and account for a major share in the power generating technology mix in 2050. This ex-

                                                 
46  In addition to the technologies recorded in Table 6.1, Messner (1997) assumes a learning rate for solar thermal of 

15 percent. 
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ample illustrates the importance of clustering learning technologies as the experience (i.e. cost 
reductions) gained by some applications in one sector may benefit the deployment of related ap-
plications in other sectors. 
 
In a second set of experiments, the number of clusters of key technologies was enlarged from 
five to ten (representing 59 individual MARKAL learning technologies). During these experi-
ments, the number of clusters included in the model runs was varied from 2 to 10 in order to as-
sess the impact on the cumulative installed capacity of key technologies such as solar PV or fuel 
cells (de Feber et al., 2002). Depending on this number of clusters, these key technologies were 
either ‘locked-in’ or ‘locked-out’ from the energy system. This finding further illustrates the 
complex interactions in a detailed energy technology model such as MARKAL and the impor-
tance of a proper and balanced identification of clusters of learning technologies. 
 
The timing of investments 
Messner (1997) has analysed differences in timing (or pathways) of investments in new electric-
ity generating technologies in two alternative cases: the dynamic case with exogenous cost re-
ductions and the technological learning case with endogenous cost reductions (see also Grübler 
and Messner, 1998). The most striking differences are that, compared to the dynamic case, the 
learning case shows higher up-front investment costs in the period 1990-2015, but lower in-
vestment costs in the years 2015-50, while over the total period 1990-2050 the discounted sys-
tems costs are lower. This finding illustrates a generic difference between the two approaches of 
modelling future technology costs and performance (Nakicenovic, 2002). In the dynamic case, it 
pays to postpone some investments in new technologies until the costs are reduced (exoge-
nously). In the learning case, there is no time to waste. Higher levels of costly investments are 
made immediately to accrue sufficient experience to be able to reap the benefits of cost reduc-
tions at some point further along the learning curve. Nevertheless, as mentioned above, despite 
higher initial investments, the overall discounted costs are lower in the learning case compared 
to the dynamic case. This result implies that early actions to promote new technologies may be 
able to reduce the overall discounted costs of long-term mitigation strategies even if similar 
rates of ‘autonomous’ technological improvements are assumed in the case without learning. In 
reality, however, the exogenous cost reductions are unlikely to occur unless someone else in-
vests instead (Nakicenovic, 2002). 
 
The timing of CO2 abatement 
The above findings of Messner, Grübler and Nakicenovic, with regard to the optimal timing of 
investments in new (abatement) technologies seem to contradict comparable findings of Manne 
and Richels (2004) as well as Kypreos and Bahn (2003b) regarding the optimal timing of carbon 
abatement, notably when the mitigation target is to reach cost-effectively a certain CO2 concen-
tration level at a certain point in time (say 550 ppmv in 2100).47 According to Manne and 
Richels (2004), the inclusion of learning-by-doing (LBD) does not have a significant impact on 
the overall timing of carbon abatement in order to reach a concentration level of 550 ppmv in 
2100, while Kypreos and Bahn (2003b) even conclude that LBD postpones strong actions in 
carbon abatement to later periods in the 21st century. These differences in findings between ‘bot-
tom-up’ studies seem to confirm the ‘top-down’ approach of Goulder and Mathai (2000), who 
                                                 
47 It will be clear that if the mitigation target is specified as a certain (declining) limit of CO2 emissions per 5 or 10 

year period (starting in 2010), the inclusion of endogenous learning does not have an impact on the timing of car-
bon abatement (as this is fixed per period), but only on the costs of reaching this target. In addition, it may also be 
clear that if there are no mitigation targets at all, the inclusion of endogenous learning does not have an impact of 
the ‘optimal timing’ of carbon emissions as such but rather of the actual outcome of these emissions in the baseline 
scenario, depending on the difference in assumptions between exogenous and endogenous technological change. 
For instance, in the baseline scenario of Kypreos and Bahn (2003b) global CO2 emissions in 2100 are 44 percent 
lower when endogenous learning is included (compared to the baseline excluding technological learning). In 
Manne and Richels (2004), the reduction in baseline carbon emissions varies roughly between 10 and 70 percent, 
depending on whether learning-by-doing (LBD) will result in low or high cost savings of electricity generating 
technologies, compared to the no-LBD case. In Grübler et al. (1999a and 1999b), baseline carbon emissions in 
2100 are 66 percent lower due to the inclusion of technological learning. 
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found that the timing of abatement is analytically ambiguous when the channel for knowledge 
accumulation is LBD (see Section 5.2). 
 
To some degree, these differences in findings may be due to differences in model specification 
and parameterisation, notably of the learning curve. When the cost reductions due to LBD are 
high, early investments are warranted (and initial abatement rises), whereas there is less in-
ducement for early investments (and abatement) when these reductions are low (Manne and 
Richels, 2004; Goulder and Mathai, 2000). 
 
However, the above mentioned differences in findings may also be partly due to differences in 
meaning and interpretation of ‘timing of abatement action’, where one party is primarily fo-
cused on ‘ timing of investment’ and the other on ‘timing of emission reduction’. Actually, there 
seems to be some consensus on the timing of abatement policies. For instance, according to 
Grübler and Messner (1998), abatement action needs to start in the short run, but this does not 
necessarily mean aggressive short-term emissions reductions but rather enhanced research & 
development and technology demonstration (R&DD) efforts that stimulate technological learn-
ing. On the other hand, Kypreos and Bahn (2003b), who conclude that LBD postpones strong 
actions in carbon abatement by a few decades, notice that early policies in form of R&DD sup-
port for the new and carbon-free technologies are implicitly assumed in their approach. Hence, 
there seems to be some consensus between ‘bottom-up’ approaches on LBD with regard to the 
need of early timing of R&DD abatement policies. Nevertheless, there still seems to be some 
obscurity and controversy with regard to the meaning and interpretation of the ‘timing of 
abatement actions’ and, hence, further research and clarification on this issue seems to be war-
ranted. 
 
Abatement costs 
Compared to the abovementioned issue on the timing of CO2 abatement, there seems to be much 
more consensus among bottom-up approaches with regard to the impact of induced technologi-
cal change on the costs of carbon abatement. In general, technological learning has a very sig-
nificant impact on the reduction of these costs, with the size of this impact depending on the as-
sumed rate of technological learning (compared to the assumptions on technological change in 
the baseline), the number of learning technologies included in the analysis, the year or period 
considered, the stringency of the mitigation target, the opportunity of emissions trading, as well 
as the discount rate and the indicator used to express abatement costs, i.e. either in terms of 
marginal costs or as an amount/percentage of total (discounted) costs/GDP losses. 
 
In terms of reducing marginal abatement costs, the impact of endogenous learning has been es-
timated at 20-40 percent for the years 2020-2050 (Seebregts et al., 2000; Manne and Richels, 
2004; Bahn and Kypreos, 2003). For the year 2100, this impact has even been estimated at 60-
80 percent (Grübler and Messner, 1998; Kypreos and Bahn, 2003b). For instance, in the static 
technology case of Grübler and Messner (1998), the marginal abatement costs of the carbon 
constraint increase continuously from 10 US$/tC in the year 2002 to some 1200 US$/tC towards 
the end of the 21st century. In the endogenous learning case, these costs are much lower, level-
ling off at US$500/tC.48 In terms of total (discounted) abatement costs/GDP losses, estimates of 
cost reductions due to technological learning vary by period (and study) considered, i.e. 10 per-
cent for the period 1990-2050 (Seebregts et al., 2000), 40-60 percent for the period 2000-2050 
(Barreto and Kypreos, 2000), 40-70 percent for the period 2000-2100, in case of a maximum 
concentration level of 550 ppmv (Manne and Richels, 2004), and 50-70 percent for the year 
2050 only (Bahn and Kypreos, 2003). 
 

                                                 
48  Notice that these marginal abatement costs compare to a carbon tax or price of an emission permit at the same 

level. Notice also that for long-term time intervals such as the 21st century it would be more realistic to compare 
the difference in marginal abatement costs between an endogenous learning case and an exogenous technology 
dynamics case (rather than a static technology case). 
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As LBD implies investment costs in early periods and (rising) benefits in later periods, the rate 
of cost reductions due to technological learning is generally higher when later periods are con-
sidered. In addition, the cost impact of LBD is higher if the discount rate is lower. Moreover, 
according to the estimates of Barreto and Kypreos (2000), cost reductions due to endogenous 
learning are higher in case of full emissions trading (60%), compared to no trading (40%). As 
expected, these cost reductions are also higher in case of technologies characterised by higher 
learning rates, compared to lower learning rates (Manne and Richels, 2004). With regard to 
stringency of the mitigation target, the impact of LBD on cost reductions seems analytically 
ambiguous. If the CO2 concentration level is lower (i.e. more stringent), cost reductions due to 
technological learning are higher in an absolute sense. However, in a relative sense (i.e. ex-
pressed as a % of abatement costs without LBD), they may either decline (Manne and Richels, 
2004) or rise (Kypreos, 2003) if the concentration level is lower. 
 
Finally, in the cases studied by Bahn and Kypreos (2003), induced technological change has a 
dual impact on GDP. Compared to the baseline scenario without learning, ITC yields GDP 
growth in the baseline cases including either one-factor or two-factor learning (as the production 
of energy becomes cheaper due to LBD/ITC). Compared to the baseline cases (both including 
and excluding learning), ITC reduces GDP losses in the mitigation cases (both including and 
excluding learning). For instance, Bahn and Kypreos (2003) estimate the GDP loss in 2050 due 
to carbon abatement at 1 percent in the mitigation case without learning (compared to the base-
line without learning), at 0.5 percent in the mitigation case with 1FL (compared to the baseline 
with 1FL), and at 0.3 percent in the mitigation case with 2FL (compared to the baseline with 
2FL). Hence, due to technological learning, abatement costs are reduced by 50% in case of 1FL 
and even by 70% in case of 2FL (compared to the mitigation case without learning). Notice, 
however, that total GDP in the mitigation cases with learning may be higher than the baseline 
scenario without learning, as the (reduced) GDP losses due to carbon mitigation may be sur-
passed by the growth in GDP due to technological learning. 
 
The allocation of R&D expenditures 
Recently, two studies using two-factor learning curves within the ERIS model have explored the 
role and allocation of R&D expenditures in energy technology processes (Barreto and Kypreos, 
2004b; Miketa and Schrattenholzer, 2004). Based on estimated learning-by-doing rates (LDRs) 
and assumed learning-by-searching rates (LSRs) for solar PV and wind, Miketa and Schratten-
holzer (2004) present the optimised levels of R&D for these learning technologies up to 2080 in 
the hypothetical situation of an unlimited R&D budget. Additional sensitivity analyses show 
that the learning rates affect the optimised R&D levels in opposite ways. Higher LSRs result in 
higher optimised R&D expenditures, implying that more R&D investments pay off. Accord-
ingly, investment cost reductions are steeper when LSRs are high. In contrast, higher LDRs lead 
to lower optimised R&D expenditures. This is because when learning-by-doing is more effec-
tive than learning-by-searching, cost reductions can be achieved better through capacity accu-
mulation while R&D funds can be saved rather than being spent to reduce costs (Miketa and 
Schrattenholzer, 2004). 
 
Another interesting finding of Miketa and Schrattenholzer is that the optimised R&D allocation 
for one technology is independent of the presence and learning parameters of the other technol-
ogy. Hence, they identified a situation in which the often-cited phenomena of ‘lock-in’ (i.e. the 
dominance of one learning technology at the expense of the other as a consequence of increas-
ing returns to scale) and ‘crowding-out’ (i.e. a limited R&D budget that leaves room for sup-
porting only one technology) were not observed. 
 
Similarly, Barreto and Kypreos (2004b) have estimated the optimal allocation of R&D expendi-
tures for six learning technologies based on assumed LDRs and LSRs (see Table 6.2) and a 
fixed R&D budget up to 2050 (although the total available budget was not fully spent in most 
years and cases considered). As expected, the technologies with the highest LSR - such as solar 
PV, gas fuel cells and wind turbines - appear to be more attractive for expending R&D re-
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sources than other learning technologies (such as the gas combined cycle, clean coal or new nu-
clear technology). However, other factors such as the LDR, the maximum growth rates allowed 
and the presence or absence of a constraint on emissions, which may force low-carbon tech-
nologies into the solution, play also an important role. Moreover, sensitivity analyses reveal that 
a higher depreciation rate of the knowledge stock may favour allocating more R&D funds to 
currently competitive technologies in order to avoid or mitigate their ‘forgetting-by-not-doing’ 
process -implying that if no R&D efforts are made on a given technology its investment cost 
may increase - rather than allocating these funds to currently expensive technologies that are 
promising in the long run (Barreto and Kypreos, 2004b). 
 
Uncertainty and sensitivity analyses 
Most of the results presented above are highly uncertain due to the interaction of a variety of 
modelling, methodological and parameter uncertainties (Van der Zwaan and Seebregts, 2004). 
In order to assess the sensitivity of the results to these uncertainties and the assumptions made, 
several authors have conducted uncertainty and sensitivity analyses. In addition to some find-
ings of such analyses already recorded above, a few other outcomes are recorded below: 
• In the deterministic case with no uncertainty, a new technology enters the market earlier and 

diffuses faster. In the stochastic case, however, when learning is uncertain, diffusion is more 
gradual and market entry is later. Moreover, experiments with the stochastic version of 
MESSAGE have shown that, if the uncertainties concerning future technology performance 
are incorporated, the model tends to spread risks by diversifying investment strategies over 
more technologies (Messner, 1997; Grübler and Messner, 1998; Grübler et al., 1999a and 
1999b; and Barreto and Kypreos, 2000). 

• The impact of technological learning depends highly on the future learning rates of new 
technologies that, as indicated above, are highly uncertain. As illustrated by, for instance, 
Capros and Chryssochoides (2000) or Seebregts et al. (2000), if the learning rate turns out to 
be higher (or lower) than assumed, it may have a major mutually reinforcing impact on 
trends in cost reduction deployment, installed capacity and experience (i.e. cost reduction) of 
a technology and hence on the technology mix of an energy system and the level/costs of 
carbon abatement. Moreover, as shown by Capros and Chryssochoides (2000), each tech-
nology has a different sensitivity with respect to the learning rate. 

• Capros and Chryssochoides (2000) have also analysed the sensitivity of the benefits from 
endogenous technological learning with respect to fluctuations in fuel prices. They show that 
this sensitivity is noticeable, but not very high, as a 100% change in prices resulted in a 25% 
change in the carbon cost savings of learning. 

 

6.4 An example: endogenous learning for carbon capture technologies 
In a recent paper, Riahi et al. (2004) have analysed the impact of technological learning for car-
bon capture and sequestration technologies (CCTs) on the performance of different CO2 mitiga-
tion scenarios by including (learning) CCTs for power plants in the energy supply optimisation 
model MESSAGE-MACRO (in which MACRO calculates the macroeconomic feedback effects 
of mitigation measures on energy prices and the demands for energy and other production fac-
tors). For this purpose, they selected two baseline scenarios of the IPCC Special Report of 
Emissions Scenarios (SRES) as their reference scenarios, called A2 and B2 (IPCC, 2000a). For 
each, they developed two carbon mitigation scenarios (one with and one without CCT learning) 
aiming at the stabilisation of atmospheric carbon concentrations at about 550 ppmv by the end 
of the 21st century.49 A major difference between the baseline scenarios A2 and B2 is that the 
estimated figures on population, GDP and GHG emissions in 2100 are higher in A2 than B2. 
Hence given the same abatement target for each scenario (i.e. 550 ppmv in 2100), the mitigation 

                                                 
49  For a comparable study, see Riahi et al. (2003), which analyses the impact of introducing (learning) CCT in the 

baseline scenario A2 only (without any specific mitigation target). 
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scenario A2-550 can be considered as implying more stringent carbon abatement policies than 
under mitigation scenario B2-550. 
 
In order to design a learning curve for CCTs, Riahi et al. (2004) calculated the initial total car-
bon reduction costs of CCTs at 196 US$/tC for a standard coal power plant and 137 US$/tC for 
a natural gas combined cycle power plant. Moreover, due to a lack of data, they assumed a 
learning date for the investment costs for CCT of 13 percent, based on an estimate for a compa-
rable technology, i.e. capture of sulphur dioxide (SO2) emissions from coal-fired power plants. 
 
In addition to carbon storage and sequestration, Riahi et al. (2004) considered two other mitiga-
tion options to meet the required stabilization target, namely fuel switching and energy demand 
reduction (through enhanced energy conservation). The carbon reductions of these options as 
well as other characteristics and results of the emission scenarios analysed by Riahi et al. (2004) 
are summarised in Table 6.4. More specifically, their major findings and conclusions with re-
gard to the impact of learning CCTs on the performance of carbon abatement scenarios during 
the 21stcentury include: 
• In all mitigation scenarios, the comparatively largest contribution to carbon reductions comes 

from fuel switching, notably shifting away from coal. The second most important contribu-
tion is due to carbon capture and sequestration, where the emissions reductions are particu-
larly high in the case of learning CCTs. 

• During the 21st century, total carbon reduction costs of CCTs remain constant in the mitiga-
tion scenarios with static CCTs (A2-550s and B2-220s), while they decline in the mitigation 
scenarios with learning CCTs (A2-550t and B2-550t) from 196 to 41-61 US$/tC for a stan-
dard coal power plant and from 137 to 34-38 US$/tC for a natural gas combined cycle power 
plant (Table 6.4). 

• Comparing the diffusion of CCTs in scenarios with declining costs due to learning with those 
assuming costs of static technologies shows that the market penetration of CCT is accelerated 
due to technological learning. Particularly, the carbon capture from coal technologies benefits 
considerably from the learning effect, leading to global market shares of more than 90 percent 
in 2100, compared to 60-70 percent in the case of static costs. At the end of the century, al-
most all fossil power plants are equipped with carbon capture technologies in the case of 
learning (Riahi et al., 2004). 

• A major characteristic of all four mitigation scenarios is the comparatively late diffusion of 
CCTs. It requires decades for them to diffuse widely. Large-scale applications first emerge as 
late as in the 2030s. In all scenarios, the entire diffusion of CCTs, from the initial introduction 
to saturation, spans about 50 years. 

• Cumulative carbon sequestration is higher in the case of the A2 mitigation scenarios com-
pared to the B2 mitigation scenarios, and higher in scenarios with learning CCTs than in 
those with static cost assumptions. In the case of learning, CCT’s cumulative carbon emis-
sions over the years1990-2100 range between 137 and 243 GtC (compared to 90 and 167 GtC 
in the scenarios with constant CCT costs). 

• In the mitigation scenarios, the marginal costs of carbon abatement rise steadily from 20 
US$/tC in 2000 to about 400-500 US$/tC in 2100. Although these costs are lower in scenar-
ios with learning CCTs, compared to those with static technologies, a remarkable finding is 
that these cost differences are relatively small, notably in the A2 mitigation scenarios (with 
static versus learning CCTs). A similar striking result was found with regard to total abate-
ment costs/GDP losses, where the differences in GDP losses are particularly small in the B2 
mitigation scenarios (see Table 6.4).50 

                                                 
50  The explanation for this striking result offered by Riahi et al. 2004) is vague and demanding: 'There seems to be 

no direct relationship between total amounts of cumulative carbon sequestration and GDP losses, indicating that 
the macroeconomic stabilization cost is the result of a more complex price formation, in which CCTs are just one 
influencing factors among many. CCT cost contribute to the progression of prices, but do not completely deter-
mine them.' (Riahi et al., 2004). An additional, alternative explanation might be that their analysis includes only 
CCTs as learning technologies, whereas differences in marginal/total abatement costs between scenarios with dif-
ferent technology assumptions may become larger if more learning technologies are included. 
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Table 6.4 Major characteristics and results of emissions scenarios with different assumptions 
regarding carbon storage and sequestrations technologies (CCTs, 1990-2100)a 

 Year Baseline 
scenarios 

Mitigation scenarios 
(550 ppmv in 2100) 

  (without CCTs) Static CCTs Learning CCTs 
 A2 B2 A2-550s B2-550s A2-550t B2-550t

Global GDP  
[trillion US$1990] 

2100 242.8 234.9 236.4 230.8 236.6 230.9 

Population [billion] 2100 15.1 10.4 15.1 10.4 15.1 10.4 
Primary energy [EJ] 2100 1921 1357 1571 1227 1636 1257 
Cumulative carbon 
emissions [GtC] 

2100 1527 1212 992 948 990 950 

Cumulative carbon se-
questration [GtC] 

1990-
2100 

- - 167 90 243 137 

Carbon concentrations 
[ppmv] 

2100 783 603 550 550 550 550 

Carbon reductions 
[GtC] by:  

       

• energy conservation 2100 - - 3.6 1.3 3.7 1.5 
• fuel switching 2100 - - 12.5 3.9 9.5 4.0 
• carbon sequestration 2100 - - 5.8 3.0 8.9 4.0 
• total 2100 - - 21.9 8.2 22.0 9.5 
Carbon reduction costs 
[US$/tC] 

       

• coal-based CCTs 2100 - - 196 196 41 61 
• gas-based CCTs 2100 - - 137 137 34 38 
Abatement costs:        
• marginal [US$/tC] 2100 - - 496 447 490 406 
• total/GDP losses 

[trillion US$1990] 
2100 - - 6.4 4.1 6.2 4.0 

a Compare with 1990 values for GDP (20.9 trillion US$), population (5.3 billion), primary energy use (352 EJ). and 
carbon concentrations (354 ppmv). 

Source: Riahi et al. (2004). 
 
Based on their findings, Riahi et al. conclude that ‘‘climate policies need to be extended to in-
clude technology policies, in order to make the diffusion of environmentally sound technologies 
operational in the long run... This calls for early action to accomplish the required cost and 
performance improvements in the long term, including the creation of niche markets, the devel-
opment of small-scale demonstration plants, and targeted R&D’’ (Riahi et al., 2004). This 
conclusion, however, may be questioned as the authors did not study the performance of 
mitigation scenarios excluding CCTs (or other ‘environmentally sound technologies’), while the 
comparison of the mitigation scenarios with static versus learning CCTs shows that the 
differences in marginal/abatement costs are relatively low, thereby raising doubts whether early 
action and investment in these technologies can be justified. 
 

6.5 Emissions trading and spatial learning spillovers 
In most bottom-up energy systems studies, the impact of endogenous technological change is 
analysed in the context of a scenario assuming global learning. This means that capacities of en-
ergy technologies deployed across all regions considered are added up to obtain the global cu-
mulative capacity, which is used for the computation of corresponding investment costs. 
Assuming global learning, however, has an important implication for the diffusion of the 
learning technologies (Barreto and Kypreos, 2002). With all regions contributing to the cost 
reduction, deploying an energy technology in one of them translates into a reduction of the 
specific investment costs to all of them. Hence, through these so-called ‘spatial learning 
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vestment costs to all of them. Hence, through these so-called ‘spatial learning spillovers’ in-
vestments in expanding the installed capacity of a learning technology in a given region will 
contribute to render this technology more cost-effective also in other regions, thereby affecting 
the energy technology mix and the corresponding system costs and carbon emissions in these 
regions. In a different, but comparable way, CO2 emissions trading affects not only abatement 
costs and carbon emissions at the regional level but also the development, diffusion and de-
ployment of new, carbon-saving technologies. Moreover, through the deployment of these tech-
nologies, emissions trading also influences their regional learning and spillover effects, while 
these effects may in turn affect emissions trading at the regional level, resulting in a complex, 
but intriguing interaction of the impact of spatial learning spillovers and emissions trading on 
the diffusion and deployment of new technologies and the corresponding carbon emissions at 
the regional and global levels. 
 
Recently, two bottom-up energy system studies have analysed the above-mentioned interaction 
and impact of emissions trading and learning spillovers on the regional performance of technol-
ogy deployment in the global electricity generating sector (Barreto and Kypreos, 2004a; and 
Barreto and Klaassen, 2004).51 Although the focus and methodology of these studies are highly 
comparable, there are some differences as well, notably: 
• Both studies use a multi-regional bottom-up energy-systems optimisation model. However, 

while Barreto and Kypreos (2004a) use a 5-region MARKAL model of the global energy 
system, Barreto and Klaassen (2004) apply an 11-region ERIS model. 

• While both studies are focussed on analysing the impact of emission trading and learning 
spillovers on technology deployment in the global electricity sector, Barreto and Klaassen 
explore also the effects on regional emission patterns and mitigation costs. 

• Both studies cover 6 learning technologies, out of 13 power-generating technologies in Bar-
reto and Kypreos (2004a) and out of 14 such technologies in Barreto and Klaassen (2004). 

• Both studies consider an unconstrained baseline (or reference) scenario and a CO2 con-
strained mitigation scenario. However, the ‘Kyoto-for-ever’ mitigation scenario of Barreto 
and Klaassen is less stringent for the Annex B region (excluding the US) than the ‘Kyoto-
trend’ mitigation scenario of Barreto and Kypreos for the Annex I regions (including the 
US).52 In the latter scenario, the Annex I regions are compelled to reach their Kyoto target in 
2010 and to follow, from this target, a linear reduction of 5% per decade until the end of the 
horizon. In both studies, the other regions (called either ‘non-Annex B’ or ‘non-Annex I’), 
are not subject to emissions reduction but they cannot exceed their emissions in the uncon-
strained case (implying that both studies exclude the opportunity of ‘carbon leakage’). 

• In both studies, the mitigation scenario distinguishes between three variants of emission trad-
ing, namely (i) no emissions trading across regions, (ii) restricted inter-regional emissions 
trading, i.e. only between the regions of ‘Annex B’ or ‘Annex I’, and (iii) full-free emissions 
trading between all regions.53 

• Besides a global learning scenario, the studies consider cases of regional learning, in which 
regions learn separately, i.e. technologies in one region cannot benefit from capacity accu-
mulating in another region. However, whereas Barreto and Klaassen (2004) explores only 
one case of regional learning (i.e. Annex B versus non-Annex B), Barreto and Kypreos 
(2004a) considers three cases of regional learning that represent a geographical fragmenta-
tion of the learning process in (i) Annex I/non-Annex I, (ii) IND/EIT/DEV, i.e. industrial-
ised, economies-in transition and developing countries), and (iii) single-region learning do-
mains, respectively. 

 

                                                 
51  These papers build on previous work of Barreto (2001) and Barreto and Kypreos (2000 and 2002). 
52  Officially, Annex I refers to the developed countries listed in Annex I of the United Nations Framework Conven-

tion on Climate Change (UNFCCC), while Annex B concerns the developed countries mentioned in Annex B of 
the Kyoto protocol (i.e. those developed countries that accepted an emission limitation target at the Kyoto confer-
ence). Annex B includes all countries recorded in Annex I, except Belarus and Turkey. 

53  Notice that an emission trading refers to all trade in emission permits generally and does not distinguish 
particularities of the flexible mechanisms considered under the Kyoto protocol (ET, JI and CDM). 
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As noted, besides some differences, the focus and methodology of the two studies are highly 
similar, resulting in a set of findings and conclusions that on the one hand are highly compara-
ble, but on the other hand supplement and, to some extent, qualify each other as well. The major 
findings and conclusions of these two studies will be discussed briefly below. 
 
Firstly, the presence and geographical scale of learning spillovers affect the deployment and 
ranking of different technologies in individual regions and, hence, the resulting technology mix 
in these regions. For instance, Barreto and Klaassen (2004) show that in the reference case with 
global learning, technologies such as solar PV or advanced coal plants are widely used by the 
end of the 21st century in the Annex B regions, while with regional (Annex B/non-Annex B) 
learning, these technologies remain ‘locked out’ of the electricity generating mix. For solar PV, 
a similar pattern of ‘lock-in’ versus ‘lock-out’ is observed in the ‘Kyoto-for-ever’ mitigation 
scenario under full emissions trading with global versus regional learning. Similar differences in 
technology deployment due to differences in learning spillovers were found by Barreto and 
Kypreos (2004a) for the year 2050, although for solar PV in the Annex I region they observed 
this difference in deployment only for their ‘Kyoto-trend’ mitigation scenario (for both the full 
trade and Annex I trade cases, however), but not for their reference scenario. It should be no-
ticed, however, that in most other cases analysed by these two studies the differences in tech-
nology deployment between global versus regional learning were either absent, small or less 
pronounced (‘lock-in’ versus ‘lock-out’) than in the case of solar PV in the developed regions. 
 
Secondly, the emissions trading regime may not only have a direct effect on technology de-
ployment in different regions, but also an indirect effect as it may affect the relationship or im-
pact of the presence and geographical scale of learning spillovers on the deployment and mix of 
different technologies in individual regions. For instance, Barreto and Kypreos (2004a) show 
that under the ‘Kyoto-trend’ mitigation scenario with global learning the deployment of solar 
PV in the non-Annex I region for the year 2050 is much higher in the full trading scheme than 
the no-trading regime. Besides, in both trading schemes this deployment is much higher in the 
case of global learning than in the three cases of regional learning (which, in turn, also show 
major differences in solar PV deployment). 
 
Thirdly, the imposition (and stringency) of a carbon constraint may not only have a direct effect 
on technology deployment in different regions, but also an indirect effect as it may affect the 
relationship or impact of the presence and geographical scale of learning spillovers on the de-
ployment and mix of different technologies in individual regions. For instance, Barreto and 
Klaassen (2004) show that in case of regional learning the deployment of solar PV in the Annex 
B region for the year 2050 is much higher in the ‘Kyoto-for-ever’ mitigation scenario than the 
reference scenario. Besides, in both emission scenarios, this deployment in higher is the case of 
global learning, compared to regional learning. 
 
Fourthly, the presence and scale of learning spillovers may not only affect technology deploy-
ment at the regional level but, hence, also the amount of carbon permits traded. For instance, as 
illustrated by Barreto and Kypreos (2004a), the volume of CO2 permits sold by the region Asia 
in the ‘Kyoto-trend’ scenario is significantly higher in 2050 in case of IND/EIT/DEV regional 
learning (compared to global learning), while it is significantly lower in the case of Annex 
I/non-Annex I learning. 
 
Fifthly, the presence and scale of learning spillovers may also affect the total abatement costs of 
the different mitigation cases. In general, as illustrated by Barreto and Klaassen (2004), these 
costs are highest in the case of no trading, less in the case of Annex B trading only and lowest in 
case of full global trading (although the cost differences in the trading cases of Barreto and 
Klaassen are relatively small as the mitigation target of their ‘Kyoto-for-ever’ scenario is weak). 
In addition, however, they show that for each case considered, the abatement costs are lower in 
the case of global learning, compared to regional (Annex B/non-Annex B) learning. 
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Finally, the presence and scale of learning spillovers may also have an impact on the amount of 
emissions at the regional level - notably in the non-Annex B regions - and, depending on the 
trade regime, at the global level as well. As illustrated by Barreto and Klaassen (2004), this im-
pact is in relative sense the largest in case of the ‘Kyoto-trend’ scenario with no emissions trad-
ing. In this case, the Annex B regions have to deploy low-carbon technologies in order to curb 
their emissions (except the US as it remains outside the Kyoto protocol). Such deployment leads 
to cost reductions of these technologies that, assuming global spillovers, are shared by the non-
Annex B regions. As a result, these technologies become more attractive in the non-Annex B 
regions and, hence, they become more deployed, resulting in less CO2 emissions in this region. 
However, in case of no emissions trading and no or regional (Annex B/non-Annex B) learning 
spillovers, mitigation efforts in the Annex B regions do no lead to cost reductions of technology 
deployment in the non-Annex B regions and, hence, to no changes in the technology mix and 
corresponding emissions of the non-Annex B regions. Therefore, owing to the presence of 
global learning spillovers, the imposition of emission constraints in the Annex B regions may 
induce carbon-sharing technological change and, thus, less CO2 emissions in the non-Annex B 
regions, even when the latter regions do not face carbon constraints. However, although of all 
cases considered by Barreto and Klaassen (2004) the impact of the presence of global learning 
spillovers on non-Annex B emissions is the largest in the case of the ‘Kyoto-trend’ scenario 
with no emissions trading, the size of this impact is limited to approximately 1 GtC in 2100 
(about 10 percent of the non-Annex B baseline emissions in the late 21st century) because the 
reduction target of this scenario is weak and the learning mechanism can be observed only in 
electricity generation technologies. 
 
In contrast, in the case considered above, the impact of the presence of global learning spill-
overs is much smaller (or almost absent) on Annex B emissions. This is due to the fact that for 
the Annex B regions (except the US), the level of emissions is determined by the mitigation tar-
get of the ‘Kyoto-trend’ scenario and, hence, the presence or absence of global learning spill-
overs has little impact on the carbon emissions of these regions (although, as indicated above, it 
may affect the costs of achieving the emission target). Therefore, in the case of no emissions 
trading, the impact of global learning spillovers on total, global carbon emissions is hardly de-
termined by its impact on Annex B emissions but predominantly by its effect on non-Annex B 
emissions, as outlined above. 
 
However, when global emissions trading is introduced, the impact of global learning spillovers 
on non-Annex B (and global) emissions becomes much smaller (or even zero). This is due to the 
fact that emissions trading lowers the amount of (high-cost) emission reductions in the Annex B 
regions, resulting in less deployment of carbon-saving technologies in these permit-buying re-
gions and, hence, to less learning spillovers to non-Annex B regions. Moreover, any emission 
reduction realised in non-Annex B regions (either due to emissions trading or global learning 
spillovers) can be traded to Annex B regions, thereby leaving global emissions unaffected. 
 

6.6 Comparing two approaches on induced technological spillovers 
The section above has discussed some major findings by Barreto et al. (Barreto and Klaassen, 
2004; Barreto and Kypreos, 2004a) on the impact of induced technological spillovers on carbon 
emissions in (unconstrained) developing regions, while Chapter 3 has dealt with comparable 
findings by Grubb et al. (2002a and 2002b). A comparison of these two approaches of induced 
technological spillovers offers some useful insights on this issue, notably with regard to the im-
plications of the underlying assumptions and methodologies for the major findings of these 
studies. 
 
Firstly, as noted above, of all cases considered by Barreto and Klaassen (2004), the impact of 
induced technological spillovers on carbon emissions in (unconstrained) developing regions is 
the largest in the case of the ‘Kyoto-for-ever’ scenario with global learning spillovers and no 

ECN-C--04-073  63 



emissions trading, in which case this impact is approximately 1 Gt in 2100 (i.e. about 10% of 
the assumed baseline emissions of these regions). In contrast, as indicated in Chapter 3 (Figure 
3.1), Grubb et al. (2002b) estimate this impact in their case of full spillover (σ = 1) at about 11 
Gt in 2100 (i.e. some 85% of the assumed baseline emissions of the non-Annex B regions). 
These differences in impact of induced technological spillovers on carbon emissions in (uncon-
strained) developing regions can be attributed to the following factors: 
• The character of the two studies. The findings of Barreto and Klaassen (2004) are based on a 

sound analysis of the interaction between emissions trading and induced technological spill-
overs by means of a well-established scientific model, whereas the results of Grubb et al 
(2002b) are based on simple, hardly tested assumptions on the presence of international 
spillovers in order to provide a numerical illustration of the potential role and significance of 
these spillovers. 

• The assumed baseline scenario. Barreto and Klaassen (2004) base their estimate of the ref-
erence emissions in developing regions for the year 2100 on the SRES-B2 scenario (devel-
oped with the MESSAGE model), while Grubb et al. (2002b) take as their baseline the 
SRES A2 scenario of the IPCC (2000a). However, this factor can explain only a small part 
of the difference in impact of induced technological spillovers found by these studies as the 
reference emissions in developing regions for the year 2100 are estimated at approximately 
11 GtC in the SRES-B2 scenario and about 13 GtC in the SRES-A2 scenario. 

• The stringency of the carbon constraint in the developed regions (i.e. either ‘Annex B’ or 
‘Annex I’ regions). In Barreto and Klaassen (2004), the mitigation target for the year 2100 is 
relatively weak (‘Kyoto-for-ever’), while in Grubb et al. (2002b) it is rather stringent (i.e. 
Kyoto until 2012 followed by a decline in Annex I emissions by 1% per year thereafter). 
Moreover, in the analyses of Barreto and Klaassen (2004), the US remains outside the Kyoto 
Protocol, whereas in the illustrative example of Grubb et al. (2002b), it participates in the 
stringent mitigation commitments for the Annex I regions. Therefore, compared to Barreto 
and Klaassen (2004), the incentives for induced technological change in developed regions 
are much larger in Grubb et al. (2002b). 

• The meaning and implication of the concept ‘global/international technological spillovers’. 
As outlined in Section 2.2, Grubb et al. (2002b) employ a broad definition of this concept, 
including (i) spillovers due to economic substitution (‘carbon leakage’), (ii) spillovers due to 
diffusion of technological innovations, and (iii) spillovers due to policy and political influ-
ence of developed countries’ mitigation efforts on developing countries’ abatement actions. 
In their case of full spillover (σ = 1), this definition covers the full, global diffusion of all en-
ergy/carbon-saving innovations at both the supply and demand side of the whole economic 
system, including cost reductions and other performance improvements of these technolo-
gies such as enhancing energy/carbon efficiency. On the other hand, in Barreto and Klaassen 
(2004; as well as in almost all other bottom-up energy system studies), the concept of global 
technological spillovers refers particularly to the fact that the benefits of technological learn-
ing (i.e. cost reductions) due to the deployment of a given technology in a certain region also 
spread to other regions, thereby improving the attractiveness of deploying this technology 
also in these regions. More specifically, in the case of global technological spillovers studied 
by Barreto and Klaassen, this concept refers only to the cost reduction effects of a few learn-
ing technologies on the supply side of the electricity generating system, while ignoring all 
other energy/carbon technologies of the economic system as well as all other aspects of im-
proving the performance of these technologies besides cost reduction, notably enhancing 
carbon/energy efficiency. Moreover, in the study of Barreto and Klaassen, the diffusion of 
carbon-saving technologies in developing regions may be restricted due to cost-competitive 
considerations and, hence, the power-generating technology mix in these regions may divert 
significantly from this mix in developed regions (see also the discussion below). In the study 
of Grubb et al., however, it is assumed that in case of full global technological spillovers the 
average carbon intensity in developing regions converges to the same level of the (declining) 
carbon intensity in the developed regions by the end of the 21st century.  
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Hence, whereas in Grubb et al. (2002b), the average carbon intensity in the year 2100 is 
assumed to be the same in developing and developed regions, in Barreto and Klaassen 
(2004) this intensity may be substantially higher in developing, carbon-unconstrained re-
gions than in developed, carbon-constrained regions due to different cost considerations 
in these regions. Therefore, the concept global/international technological spillovers has a 
far broader meaning and implication in Grubb et al. (2002b) than in Barreto and Klaassen 
(2004). 

 
Together, these factors - notably the multiplication of the third and fourth factor mentioned 
above - explain the large difference in impact of induced technological spillovers on carbon 
emissions in developing regions for the year 2100 as estimated in the considered cases of Bar-
reto and Klaassen (at approximately 1 Gt) and Grubb et al. (about 11 GtC). 
 
Secondly, another useful insight offered by comparing the studies of Grubb et al. and Barreto et 
al. concerns the role of incentives in deploying emission-saving technologies in case of no emis-
sions trading between developed, constrained regions and developing, unconstrained regions. In 
the studies of Barreto et al., these technologies are deployed in developed regions as far as they 
become more attractive than alternative, more carbon-intensive technologies due to endogenous, 
global learning effects (i.e. cost reductions) of emission-reducing technologies as well as en-
dogenous, climate policy induced effects of raising the costs of alternative technologies, while 
in the developing regions only the global learning effects apply. In the study of Grubb et al., 
however, emission-saving technologies are diffused in developed regions due to autonomous 
and endogenous factors, notably stringent policy-induced carbon constraints.  
 
In case of full global technology spillovers and no emissions trading between developed and de-
veloping regions, these technologies are assumed to be widely deployed in developing regions 
regardless their cost implications compared to alternative technologies that might be more car-
bon-intensive, but cheaper. However, why should developing countries in such a case deploy 
emission-reducing technologies, for instance carbon storage or fuel switching technologies for 
generating electricity, if cheaper, but more carbon-intensive alternatives are available? Of 
course, incentives to encourage the diffusion of emission-saving technologies in developing re-
gions could be enhanced by introducing carbon constraints in these regions and/or allowing 
emissions trading between developed and developing regions. However, allowing such trading 
has a variety of counteracting effects on the performance of climate policy and induced techno-
logical change (as discussed below), while introducing effective carbon constraints in develop-
ing countries may be politically hard to realise, particularly in the short and medium term (and it 
discharges the politically attractive statement that, owing to global technology spillovers, emis-
sions in developing regions can be reduced substantially without introducing carbon constraints 
in these regions).  
 
Finally, an additional useful insight offered by comparing the studies of Grubb et al. and Barreto 
et al. refers to the interrelated effects of emissions trading on the performance of climate poli-
cies and induced technological change. More specifically, these effects can be distinguished 
into: 
• The impact of emissions trading on technology deployment and learning effects. As dis-

cussed above, emissions trading lowers the amount of high-cost emission reductions in con-
strained regions, resulting in less deployment of carbon-saving technologies in these permit-
buying regions and, in case of (global) learning effects, in less cost reductions of these tech-
nologies (and less spillovers to other regions). In the permit-selling regions, however, the 
deployment of (other) carbon-saving technologies is encouraged, including their potential 
(global) learning effects.  

• Hence, emissions trading has two counter-acting effects on the process of technology de-
ployment and learning at the regional level, and the final outcome depends, among other 
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things, on the relative weights of these two effects (Barreto and Klaassen, 2004; Barreto and 
Kypreos, 2004a).54 

• The impact of emissions trading on regional and global carbon levels. In the absence of 
technological spillovers, emissions trading has no impact on the total amount of global car-
bon emissions but only on its distribution among participating regions. However, when 
technological spillovers are present, emissions trading between constrained and uncon-
strained regions does have an impact on the total amount of global carbon emissions as any 
carbon reduction in unconstrained regions due to technological spillovers can be traded to 
constrained regions, thereby enhancing emissions in these constrained regions as well as at 
the global level, compared to the case when such trading is not allowed. Actually, the poten-
tially high impact of full global technological spillovers on global emissions, as illustrated 
by Grubb et al. (2002b), depends critically on the assumption of no emissions trading be-
tween constrained and unconstrained regions (although, paradoxically, CDM-based emis-
sions trading might be a major channel to promote full international technology spillovers to 
unconstrained regions). If they would have allowed such trading, global carbon emissions 
would have been much higher (the same applies to the technology spillovers explored by 
Barreto and Klaassen, although the size of these spillovers are much smaller). Hence, in the 
presence of global technological spillovers, global emissions are lowest when emissions 
trading between constrained and unconstrained regions is not allowed. 

• The impact of emissions trading on abatement costs. In general the (static) costs or GDP 
losses of achieving a given mitigation target are lowest when full, unrestricted emissions 
trading is allowed on a global scale (Weyant and Hill, 1999; Sijm et al. 2000). This implies 
that an abatement strategy that does not allow such trading ends up in higher costs. This ap-
plies particularly for the strategy illustrated by Grubb et al. (2002b) as its abatement target 
for the year 2100 is rather stringent for the constrained regions while it does not allow emis-
sions trading between constrained and unconstrained regions. Hence, the costs or GDP 
losses of this strategy could most likely be reduced substantially if such trading would be al-
lowed. However, as explained above, allowing emissions trading between constrained and 
unconstrained regions implies that global emissions levels will be higher (as it allows un-
constrained regions to trade their emission reductions resulting from global technological 
spillovers). Therefore, in the presence of global technological spillovers, there seems to be a 
trade-off between an abatement strategy with full, unrestricted emissions trading - which 
implies lower costs - and an abatement strategy with no or restricted emissions trading 
(which implies lower global emissions). The optimal outcome of this trade-off may be hard 
to determine as it depends on the size of the global spillover effects versus the amount of 
cost savings owing to full emissions trading. Hence, further research on the optimal trading 
regime in the presence of global technological spillovers seems warranted. 

• The impact of emissions trading on dynamic efficiencies. It is sometimes stated that forbid-
ding or restricting emissions trading would stimulate induced technological change (ITC) in 
constrained regions, which may lead to dynamic efficiencies such as lower abatement costs 
and/or higher abatement levels in the long run. However, some counter-arguments to this 
statement can be raised. Firstly, as discussed above, with regard to the process of technology 
deployment and learning, emissions trading has counter-acting effects in constrained versus 
unconstrained regions, but the final outcome is ambiguous. Secondly, a similar argument 
can be applied with regard to R&D-based ITC, in the sense that emissions trading may dis-
courage R&D-based ITC in constrained regions, while encouraging it in unconstrained re-
gions. However, according to Buonanno et al. (2000), even if restrictions on emissions trad-
ing stimulate, on balance, R&D-based ITC, the impact on overall abatement costs and eco-
nomic growth appears to be detrimental as the cost savings achieved through unrestricted 
emissions trading seems to stimulate growth more than the increase of R&D-driven innova-

                                                 
54  For instance, in case of no emissions trading, a carbon constraint in developed regions may encourage the de-

ployment of wind or nuclear technologies in these regions (and through global learning effects also in developing 
regions), while allowing CDM-based emissions trading may encourage the deployment of solar PV in developing 
regions (with potential learning spillovers to developed regions). 
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tions achieved through trade ceilings (as discussed in Section 5.2). Finally, as emissions 
trading lowers the short-term (static) costs of an abatement target, governments may be will-
ing to accept a more stringent target, which may enhance the inducement of developing and 
diffusing carbon-saving innovations. 

 
To conclude, emissions trading has a variety of counter-acting and counter-balancing effects on 
the performance of abatement policies in the presence of induced technological change and in-
ternational spillovers. Although insights in these effects have grown over the past years, little is 
still known about the final, empirical outcome of these effects and, hence, additional research 
seems to be warranted. 
 

6.7 Major similarities in performance of ITC bottom-up studies 
In contrast to the ITC top-down studies (see previous chapter, notably Section 5.3), the ITC bot-
tom-up studies reviewed in the present chapter show some major similarities in performance, in 
terms of both methodological approach and major findings of the models used. In order to ex-
plore the interaction between climate policy and induced technological change (ITC), these 
studies have used a detailed, bottom-up energy technology system model in which learning 
curves have been added to the cost functions of (some) energy technologies covered by these 
models. The major findings of these studies are that, due to the presence of ITC (i.e. ‘learning 
technologies’), (i) the investment costs of these technologies decline if they built up capacity 
(‘experience’), (ii) the energy technology mix changes in favour of those technologies that built 
up the relatively highest rate of learning (i.e. cost reduction), and (iii) the total abatement costs 
of a given abatement target decline significantly.55 
 
However, although there is a large degree of agreement among bottom-up studies with regard to 
these results, the size of the impact of ITC on, for instance, the technology mix or abatement 
cost may vary substantially between these studies depending on the assumed rate of technologi-
cal learning, the number of learning technologies included in the analysis, the time frame con-
sidered, the stringency of the mitigation target, etc. 
 
Evaluation of ITC bottom-up studies: strengths and weaknesses 
The major strength of ITC bottom-up studies is that they provide a detailed, and rather concrete 
picture of the process of induced technological change, particularly of the diffusion and de-
ployment of energy and carbon-saving technologies due to learning-by-doing (in contrast to the 
often highly aggregated, and rather abstract paintings generated by ITC top-down studies that 
are often focussed on technology innovation through R&D). Moreover, some recent bottom-up 
studies have offered valuable contributions and useful insights with regard to analysing the in-
teraction between ITC, emissions trading and learning spillovers. 
 
On the other hand, bottom-up ITC studies are usually faced by some weaknesses and limita-
tions, including: 
• While the number of energy technologies included in bottom-up models is often relatively 

large, the number of technologies characterized by endogenous learning is usually limited to 
a few (electricity) supply-side technologies, thereby neglecting other technologies, particu-
larly at the demand side of the energy system (Laitner and Sanstad, 2004). This leads to bi-
ased results and an underestimation of the full potential impact of ITC. 

• The empirical database for estimating learning curves in general, and two-factor learning 
curves in particular, is often weak. Moreover, the estimation of (two-factor) learning curves 
is often faced by statistical problems and econometrical shortcomings, leading to biased re-

                                                 
55  In general, bottom-up ITC studies assume a given abatement target in their mitigation scenarios and, hence, they 

do not analyse the impact of ITC on emission reductions or similar global warming indicators (although they 
sometimes explore this impact in their baseline scenario by comparing this scenario with and without ITC). 
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sults. In addition, despite some growing insights, the technology learning phenomenon re-
mains largely a ‘black box’ and sound models, able to identify the factors that underlie the 
learning effects, are still missing (Barreto, 2003). As a result, it is often hard to draw firm, 
relevant policy implications from bottom-up studies based on estimated learning curves. 

• Bottom-up studies are usually focussed on analysing mainly the diffusion of technologies 
(‘learning-by-doing’) and less on technological innovation through R&D investments 
(‘learning-by-searching’). The latter channel of ITC, however, is covered by some recent 
bottom-up studies, although - as indicated above - these studies often suffer from statistical 
and econometrical shortcomings. In addition, bottom-up studies are usually focussed on ana-
lysing the ITC impact of only one or two policy instruments, particularly an energy/carbon 
tax or a technology subsidy. As a result, it is often hard to draw firm, relevant policy impli-
cations with regard to the choice and optimal mix of instruments, either within the field of 
technological innovation or the field of technological diffusion, or between these fields of 
technological change. 

• Bottom-up studies are characterised by a limited specification of the behaviour of producers 
and consumers, the performance of (imperfect) markets, and the feedback effects of this be-
haviour and performance at the macroeconomic level. Therefore, their estimates of GDP 
losses or social costs due to climate policy or ITC have to be interpreted with some pru-
dence. 

 

6.8 Major lessons and implications 
Despite significant progress made in endogenising technological change in bottom-up modelling 
studies over the past decade, the present state of these studies is still characterised by too many 
weaknesses and limitations to draw a set of firm, specific policy lessons and implications. Nev-
ertheless, a few general lessons and implications can be formulated. Firstly, according to Gielen 
et al. (2003), 'the most important policy message from technology learning is that new technolo-
gies require markets to become commercial…. The outstanding feature of technology learning 
is that there are no substantial cost reductions without market interaction'. Hence, as it takes 
time to build up capacity (i.e. ‘learning’ or ‘experience’) and to reduce costs until a market 
break-even point is reached, there is a need for early policy action 'to accomplish the required 
cost and performance improvements in the long term, including the creation of niche markets, 
the development of small-scale demonstration plants, and targeted R&D' (Riahi et al., 2004). In 
addition, the (temporary and declining) subsidization of promising technologies may be consid-
ered, although the dangers of ‘picking a winner’ and becoming ‘locked-in’ an inefficient tech-
nology system have to be reduced by broadly supporting a general package of renewable energy 
and carbon saving technologies rather than heavily subsidizing a specific technology. Even then, 
however, there is still the risk of ‘rent-seeking’ and ‘rent-keeping’, i.e. the incidence of political 
lobbies to introduce and maintain subsidies at a fixed level. 
 
Another lesson is that, owing to the presence of spillovers, the imposition of emission con-
straints in the Annex I region may induce technological change and, hence, emission reductions 
in the non-Annex region even when the latter region does not face emission constraints itself 
(Barreto and Kypreos, 2004a; Barreto and Klaassen, 2004). A major policy implication is that 
Annex I governments may improve the operation of spillovers and the resulting diffusion of 
technologies to non-Annex I countries, for instance by means of an open, fair international trad-
ing regime - including emissions trading - or by upgrading the absorptive capacity in non-Annex 
I countries for the transfer, deployment and further development of new technologies. It is hard, 
however, to draw more firm, specific policy implications given the trade-offs and still limited 
knowledge with regard to the intriguing, but complicated interaction between emissions trading, 
induced technological change and the presence of spillovers, including the impact of this inter-
action on total abatement cost and global emission reductions. 
 

68  ECN-C-04-073 



 

A final lesson or implication is that further research is needed in order to draw more concrete, 
firm policy conclusions from ITC bottom-up modelling studies. More specially, the major sug-
gestions for additional research include: 
• Improving the empirical database for bottom-up studies, particularly to improve the estima-

tion and interpretation of (two-factor) learning curves. 
• Expanding the number of learning technologies in bottom-up modelling studies, including 

technologies at the demand side of the energy system. 
• Enlarging the focus of analysis from technology diffusion and a few related policy instru-

ments to technology innovation and other instruments in order to draw firm, relevant policy 
implications with regard to the choice and optimal mix of policy instruments, either within 
the field of technological innovation or the field of technological diffusion, or between these 
fields of technological change. 

• Intensifying the analysis of the impact of climate policy on international spillovers, includ-
ing the interaction between emissions trading, induced technological change and the pres-
ence of spillovers, as well as the impact of this interaction on total abatement cost and global 
emission reductions. 
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7. IMPLICATIONS FOR POST-KYOTO CLIMATE AND 
TECHNOLOGY POLICIES 

The discussion in the previous chapters raises some major considerations and implications for 
the post-Kyoto agenda on climate and technology policies.56 Firstly, as argued in Chapter 4, the 
market for developing and diffusing environmental technologies is characterised by two related 
sets of imperfections (i.e. environmental externalities and technology market failures). More-
over, both the greenhouse effect and the spillover externality of technological change have a 
highly international, global character. Therefore, a well-balanced package of internationally co-
ordinated climate and technology policies is necessary to deal with these two sets of market im-
perfections, in particular as long as climate policy alone is not able to address the greenhouse 
externality in an adequate way. In addition, it should be noted that technology policy alone will 
not be able to cope adequately with the issue of global warming, since an incentive - for in-
stance a carbon tax or emission limit - is necessary to induce technological change in the direc-
tion of developing and diffusing emission-saving technologies.57 
 
Secondly, it is sometimes suggested that technology diffusion should be used as an incentive in 
the international climate negotiations, for instance by excluding certain countries from the cli-
mate coalition and, thus, from the benefits of technology diffusion (or by including these coun-
tries by exchanging these benefits for the willingness to accept emission limitations). It may be 
questioned, however, whether such a strategy - notably the ‘exclusion option’ - will be feasible 
and efficient, because technological knowledge has a highly public (international) character, 
while restricting technology diffusion is not in the interest of the climate coalition for both envi-
ronmental and technology learning (i.e. cost reduction) reasons (Tol et al., 2000 and 2001; 
Golombek and Hoel, 2003, and Koops, 2003). Indeed, Tol et al. (2000 and 2001) show that this 
strategy of ‘issue linkage’ is not cost-effective, or even counter-productive, since nobody will 
benefit. Rather than excluding other countries from the knowledge on emission-saving tech-
nologies, it is better to pursue an optimal diffusion of such technologies. 
 
Thirdly, the considerations above raise the question how the innovation and diffusion of emis-
sion-saving technologies can be stimulated internationally by the climate coalition. The major 
options include: 
• International co-operation on Research, Development, Demonstration and Deployment ac-

tivities (summarised as RD3; see Barreto and Klaassen, 2004). For instance, De Groot and 
Tang (2001) suggest the option of an international subsidy fund for the innovation and diffu-
sion of renewable energy technologies. 

• Encouraging technology diffusion through trade and other, general policies. Since diffusion 
of technology often occurs through international trade and foreign direct investments, it can 
be promoted through general policies such as pursuing a fair open trading system or taking 
care of adequate financial and legal means in developing countries (IPCC, 2000b; Koops, 
2003). 

• Stimulating technology diffusion through emissions trading, notably the Clean Development 
Mechanism (CDM), and sound technology transfer strategies emphasizing, among others, 
local activities and sound technology capacity building that enables countries to assimilate 
and adapt experience accumulated somewhere else (Barreto and Klaassen, 2004). 

                                                 
56  Besides the previous chapters, the discussion of the present chapter is based particularly on Koops (2003), as well 

as relevant contributions made by IPCC (2000b), Tol et al. (2000 and 2001), Groot and Tang (2001), Buchner et 
al. (2002b), Grubb et al. (2002a and 2002b), Golombek and Hoel (2003), and Barreto and Klaassen (2004). 

57   Moreover, as shown recently by Buchner and Carraro (2004), international technological cooperation without any 
commitment to emissions control may not lead to a sufficient abatement of greenhouse gas concentrations. 

70  ECN-C-04-073 



 

• Promoting the innovation and diffusion of carbon-saving technologies by means of volun-
tary agreements (‘covenants’) between governments of the climate coalition and a few inter-
national firms that dominate R&D and technological change in certain areas, for instance the 
international automobile industry or the international ‘bulk power’ technology generating 
industry (Grubb et al., 2002b; Koops, 2003). If such covenants turn out to be not effective, 
the imposition of well-designed international technology standards could be considered. 

 
These options should be part of the post-Kyoto agenda in order to enhance the potential positive 
interaction between climate policy, induced technological change and international spillovers, 
including the potential positive impact of this interaction on mitigating global greenhouse gas 
emissions and reducing total abatement costs. 
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