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Abstract 
The primary topic of the SAPIENT project and its predecessor TEEM has been the issue of in-
corporating technology learning endogenously in energy models and trying to determine the 
impact of public R&D on this learning process. ECN has incorporated the learning mechanism 
into the MARKAL model using an extended database for the Western Europe energy system. 
By using advanced modelling techniques (Mixed Integer Programming) and the concepts of key 
components and technology clusters more than 60 technologies in the power sector have been 
endowed with learning characteristics. By this approach solving times could be kept within a 
reasonable length, i.e. less than 20 minutes per run. 
 
An important insight gained from model runs with many learning technologies, including con-
ventional technologies, is that new technologies aiming to ‘beat’ conventional ones are aiming 
at a ‘moving target’. Also conventional technologies can learn, and this aspect makes it much 
more difficult for new sustainable technologies to penetrate the market in the model. 
 
By using a Monte Carlo approach uncertainties in important learning parameters could be ana-
lysed. It appeared for instance that the main factor that determines the uncertainty on floor costs 
for photovoltaic (PV) energy production is the uncertainty in the PV progress ratio. 
 
One of the main targets of the SAPIENT project was to find ways to model the effect of R&D 
on technology learning. ECN has explored an approach to capture this effect by assuming a rela-
tionship between the R&D-intensity of a technology and its progress ratio. Following this ap-
proach it was found that uncertainties in the overall progress ratio are often higher than the ef-
fect additional R&D can have on a certain technology. Also, model outcomes depended rather 
on the carbon prices used in the scenarios than on the enhancement of learning by R&D. This 
suggests that a stimulus for sustainable technologies cannot be reached by R&D-measures 
alone.  
 
However, much more research work will have to done on how to model the relation between 
R&D-expenditures and cost reduction. Although the R&D-intensity approach circumvents sev-
eral of the pitfalls of the two-factor learning curve used by the other partners in the project, it is 
still far from perfect and based on several assumptions which need to be studied with more sci-
entific scrutiny. 
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1. INTRODUCTION 

Technology learning, or technology change, is widely recognised as a key factor in economic 
progress, as it enhances the productivity of factor inputs. In recent years also the notion has de-
veloped that targeted technological development is a main means to reconcile economic ambi-
tions with ecological considerations (e.g. Grübler, 1998). This raises the issue that assessments 
of future trajectories of, for example, energy systems should take into account context-specific 
technological progress. Rather than taking characteristics of existing and emerging technologies 
as a given, their development should be a function of dedicated Research, Development and 
Demonstration (RD&D) actions and market deployment under varying external conditions. 
 
In recent years, endogenous technological learning (ETL) has shown to be a very promising 
new feature in energy system models (e.g. MARKAL). A learning curve is implemented de-
scribing the specific (investment) cost as a function of the cumulative capacity for a given tech-
nology. It reflects the fact that technology costs often decline as a result of its increasing adop-
tion into the society due to the accumulation of knowledge (e.g. due to learning by doing 
mechanism). 
 
In 1998, ECN carried out the first MARKAL experiments with ETL in the framework of the 
EU1 sponsored TEEM project (Energy Technology Dynamics and Advanced Energy System 
Modeling). At that time, the concept of ‘clusters of technologies’ was first introduced 
(Seebregts et al., 1999 and 2000). The ‘cluster approach’ was also used in the successor of this 
project, called SAPIENT (Systems Analysis for Progress and Innovation in Energy 
Technologies) which started in Spring 2000. This concept, which is needed to deal with 
interdependent learning between technologies, has been dealt with in more detail in the recent 
ECN SAPIENT experiments that followed on the TEEM experiments. During this project the 
number of clusters has been extended, as will be outlined in Chapter 5. 
 
This report summarises the ECN contributions to the SAPIENT project, which were carried out 
on behalf of the European Union and co-sponsored by ECN’s own funds that come from the 
Dutch Ministry of Economic Affairs2. In the earlier TEEM project learning curves were 
implemented in the various energy system models involved. The main focus was on the learning 
by doing mechanism (i.e. the technological progress achieved by increasing the total capacity 
installed). In the SAPIENT project, efforts have been made to also include the technological 
progress caused by dedicated (public) R&D. If the two mechanisms are combined in one curve a 
so-called ‘two factor learning curve’ (2FLC) results.  
 
The structure of this report is as follows. Chapter 2 describes ECN’s (indirect) approach to 
analyse two factor learning curves with the MARKAL Western European model. The 
implementation of this approach in MARKAL is outlined in Chapter 3. Chapter 4 describes the 
used of Monte Carlo Analysis (MCA) with the MARKAL model. MCA can give an indication 
of the parameter and data uncertainties within a particular scenario. Chapter 5 presents the 
model run results, preceded by a short overview of the assumptions on technology data and 
scenarios. Chapter 6 ends with the formulation of the conclusions and recommendations. Annex 
A to Annex C contain supporting information, while a special Annex D is devoted on a model 
technology data comparison for the models PRIMES, POLES, MARKAL, MESSAGE, ERIS, 
and MERGE-ETL, a separate task within the SAPIENT project. 

                                                 
1  The European Commission is acknowledged for sponsoring the ECN contribution to the TEEM project (Non Nu-

clear Energy Programme JOULE III, contract JOS3-CT 0013). 
2  The European Commission and the Dutch Ministry of Economic Affairs are acknowledged for sponsoring the ECN 

contributions to the SAPIENT project (5th Framework Programme, contract ENG2-CT1999-00003 and ECN pro-
ject number 77261). 
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2. IMPACTS OF R&D INTENSITY ON PROGRESS RATIOS IN 
MARKAL 

2.1 Reasons to stick to one-factor learning curves 
In this chapter an indirect approach is described to analyse two-factor learning curves (2FLC’s) 
with the MARKAL application for Western Europe. There were several reasons to refrain from 
introducing 2FLC directly in MARKAL: 
 
Statistical fit of one-factor versus two-factor learning curves 
The TEEM project (TEEM, 1999) has shown that 2FLC does not always results in a better fit to 
the data than the single factor learning curve (1FLC: learning by doing and learning by search-
ing incorporated in one factor). So, a fundamental data problem existed to provide statistical 
support for such a two-factor approach. These empirical flaws are not surprising, since a firm 
theoretical basis to support the relationship with two factors does not yet exist.  
 
In other recent literature, attempts have been described to differentiate between these two fac-
tors in fitting an experience curve, e.g. (Kouvaritakis et al., 2000; Klaassen et al., 2002 and 
Mikita and Schrattenholzer, 2002).  
 
The learning curve then looks like (adapted from (Kouvaritakis et al., 2000): 
 
Ct = C0 × (CCt/CC0) α  × (CRDt/CRD0) β 
 
With 
Ct unit capital cost at time t 
CCt cumulative installed capacity at time t 
CC0 cumulative installed capacity at time 0 (base year) 
CRDt cumulative R&D effort at time t 
CRD0 cumulative R&D effort at time 0 (base year) 
C0 unit capital cost at time 0 (base year) 
 
α and β are learning by doing and learning by searching elasticities, respectively. From these the 
two PRs can be calculated. 
 
The equation given above can be fitted by first converting it to the form:  
 
Log(C) = a × log(CCAP) + b × log(CRD) + c 
 
Both (Kouvaritakis et al., 2000) and (Mikita and Schrattenholzer, 2002) found instability in the 
estimates of the learning parameters (based on ordinary least squares), possibly due to multi-
collinearity. Previous estimates by IPTS in the TEEM project (TEEM, 1999) showed that fitting 
the one-factor learning curve (1FLC) produced values for R2 that were far better than obtained 
with fitting the two-factor learning curve (2FLC). 
 
No relatively simple MIP approximation for a complex and technology rich models 
Addition of a ‘learning by searching’ factor to the current ‘learning by doing’ learning curve 
leads to a non-linear programming (NLP) optimisation model that cannot be approximated well 
by a mixed-integer programming (MIP) model, in case of endogenous R&D shocks. The NLP 
formulation can only be solved well for only a few technologies (e.g. see Mikita and Schratten-
holzer, 2002).  Given the complexity of the Western European MARKAL application, in terms 
of number of technologies (hundreds), and the need to further expand on the concept of clusters 
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of technologies (Seebregts et al., 2000), an NLP formulation would further hamper such expan-
sion: the model would become too complex to be solved. 
 
Data uncertainty 
The uncertainty introduced by the use of either a 1FLC or 2FLC may be smaller than the uncer-
tainty caused by the value of the 1FLC progress ratio. As illustrated in e.g (Kram et al., 2000, 
Table 2; McDonald and Schrattenholzer, 2000; and Junginger, 2000), progress ratios for one 
particular technology exhibit a large uncertainty range, e.g. see the Table for solar PV modules 
and wind turbines progress ratios in Section 4.4.1. So, methodological uncertainty may be over-
shadowed by pure data uncertainty. In Section 4, this has been illustrated to some extent for 
wind turbines). 
 
Therefore, the MARKAL model with endogenous learning was not extended with two-factor 
learning curves (2FLC’s). 
 

2.2 Indirect approach to two factor learning curves 
As an alternative, ECN proposed to treat the impact of public energy R&D indirectly, that is ex-
ternal to the MARKAL model, and estimates the impact on the progress ratio of the 1FLC. To 
start with, the basic assumptions behind the approach are: 
• Public R&D expenditure is a good indicator for the overall R&D-expenditure. 
• Additional R&D budget (an ‘R&D shock’) will lead to an increase in the so-called R&D in-

tensity of the technology. R&D intensity is defined as the relationship between public R&D 
expenditures over a period and the turnover of that technology: R&D intensity = (amount of 
R&D)/(amount of R&D + turnover). 

• The higher the R&D intensity, the better the progress ratio. 
• This relationship between a change in R&D-intensity and the change in progress ratio is the 

same for each technology. 
• R&D budget for each technology is applied with the same level of efficiency.  
• The progress ratio will not change after the period of additional R&D shock. 
 
The approach is then as follows: 
• The MARKAL model uses the ‘overall’ progress ratio that includes all factors of learning, 

including effects of R&D. 
• Additional R&D budget (an ‘R&D shock’) will lead to an increase in the R&D intensity of 

the technology. 
• An increased R&D intensity will lead to a lower (= better) progress ratio.  
• This updated progress ratio is used in the MARKAL model to study the overall impact of 

R&D. 
 
The quantitative relationship between R&D intensity and the change in progress ratio has been 
based on available statistics/data for three technologies. In the following table the progress ra-
tios are more or less realistic, and the R&D intensities have been based on SAPIENT data col-
lected by IEPE (Criqui, 2001). 
 
Table 2.1  Relationship progress ratio vs. R&D intensity for 3 emerging technologies 
Technology  Progress ratio see (Kram et al., 2000, 

Table 2, MARKAL-Europe) 
Public R&D-intensity 1985-1995 
(based on SAPIENT data Criqui) 

Fuel Cell 0.66 100% 
Solar PV 0.82 42% 
Wind Turbine 0.9 19% 
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Figure 2.1  Fitted relationship progress ratio vs. R&D intensity for 3 emerging technologies 
 
The figure above indicates that the R&D-intensity elasticity for learning is equal to 0.29% lower 
(=better) progress ratio for each additional R&D-intensity %point. It also indicates that if no 
public R&D were spent on a new energy technology, there is still a progress ratio of about 
94.5%. This progress ratio is then purely due to non-R&D-factors (i.e. ‘learning-by-doing’). 
The relationship and the resulting coefficients could be further underpinned or estimated on 
available R&D statistics and PRs of more than these 3 technologies. Based on the relationships 
outlined above, the procedure to is as follows: 
• Estimate the current progress ratio (PRC1) of technology T1 without extra R&D over a given 

historical period P1. 
• Estimate the R&D-intensity of this technology T1 over the same historical period P1. 
• Calculate what would be the amount of R&D to be spent in a reference scenario, assuming 

that the R&D-intensity stays constant over time. 
• Calculate what an extra R&D budget of x billion Euro means for the change in R&D-

intensity (∆RDI).  
• Multiply ∆RDI by 0.29: This gives the change in PR, ∆PR. 
• Add ∆PR to PRC1, resulting in PRenh-R&D-1, the new PR, enhanced by additional R&D. 
 

2.3 Estimates to be made for key technologies in MARKAL 
During the procedure outlined in Section 2.2, several estimates have to be made based on his-
torical data for the key technologies in MARKAL. These include: 
• Estimate of the historical progress ratio of the key technology. This includes an estimate of 

the sales volume and cost reductions of the key technologies over time. 
• Estimate of the historical R&D-intensity of the key technology. 
• Estimate of future R&D-spending in a reference scenario. This includes an estimate of fu-

ture sales in the reference scenario. 
 
For these estimates the Technology Improvement Database as developed within the SAPIENT 
project has been used. Since this database is based on the POLES categorisation of technolo-
gies, it had to be related to MARKAL key technologies by ‘allocation’ factors. These factors 
can be seen in Table 2.2 (for R&D) and Table 2.3 (for sales). 
 

PR = -0.29 × R&D-intensity + 0.9451 (R2 = 0.9898)
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Table 2.2  Translation from POLES R&D expenditure figures to MARKAL key technology R&D 
expenditure figures 

 Key technologies in MARKAL 
POLES Techn. NUK HYK GTK FCK EWK ESK BOK GFK COK CCK STK Sum 
HYD  1          1 
NUC 1           1 
NND 1           1 
LCT       0.5    0.5 1 
CCT       0.5    0.5 1 
ICG   0.2     0.6  0.1 0.1 1 
OCT       0.4    0.6 1 
OGT   0.3     0.5  0.1 0.1 1 
GCT   1         1 
GGC   0.8       0.1 0.1 1 
CHP   0.7        0.3 1 
SHY  1          1 
WND     1       1 
DPV      1      1 
BGT   0.2     0.6  0.1 0.1 1 
RPV      1      1 
BF2        0.4   0.6 1 
FCV    1        1 
SFC    1        1 
MFC    1        1 
 
 
Table 2.3  Translation from POLES sales figures to MARKAL key technology sales figures 

 Key technologies in MARKAL 
POLES Techn. NUK HYK GTK FCK EWK ESK BOK GFK COK CCK STK Sum 
HYD  1          1 
NUC 1           1 
NND 1           1 
LCT       0.60    0.4 1 
CCT       0.60    0.4 1 
ICG   0.1     0.5  0.3 0.1 1 
OCT       0.4    0.6 1 
OGT   0.2     0.5  0.1 0.2 1 
GCT   1        0 1 
GGC   0.6       0.1 0.3 1 
CHP   0.6        0.4 1 
SHY  1          1 
WND     1       1 
DPV      1      1 
BGT   0.1     0.5  0.3 0.1 1 
RPV      1      1 
BF2        0.7   0.3 1 
FCV    1        1 
SFC    1        1 
MFC    1        1 
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3. IMPLEMENTATION OF 2FLC’S IN MARKAL 

3.1 Introduction 
As explained in Section 2.1, ECN did not implement 2FLC’s in MARKAL directly, but devel-
oped and used an indirect approach. The explanations in this Chapter are solely meant for the 
MARKAL community, as they are rather specific for MARKAL. 
 
In this chapter, the focus is therefore on the changes to the MARKAL model (i.e. source code 
level and controlling level) in order to accommodate the following SAPIENT-specific require-
ments: 
• the use of the ‘cluster of technologies’ concept in conjunction with the Windows-based 

MARKAL user-interface (ANSWER), 
• the ability to perform multiple MARKAL runs easily: this has been used to perform the 

MARKAL R&D shocks (see Chapter 5) and the MARKAL Monte Carlo runs (see Chapter 
4), 

• changes to the MARKAL ETL output module in order to provide the relevant information 
for the ISPA objectives (ISPA stands for Integrating System for Priority Assessment, and is 
the central model developed within the SAPIENT project, see (SAPIENT, 2003). 

 
These requirements are discussed below in Sections 3.2 to 3.4. These changes have been im-
plemented in the MARKAL model source code version of 2000. 
 

3.2 Clusters of technologies 
A ‘cluster of technologies’ is defined as a group of technologies sharing a common essential 
component. This component, which can be a technology in itself, is called the ‘key technology’ 
and is selected as the learning component in each of the technologies in the cluster. Examples of 
key technologies and, correspondingly, clusters of technologies are gas turbines, fuel cells, 
photo-voltaic (PV) modules, wind turbines, steam turbines, and boilers. The existing technolo-
gies need to be grouped into clusters of technologies which are similar with respect to their 
learning behaviour i.e. the development of these technologies is in some way linked to each 
other. One technology can appear in more than one cluster, e.g. an integrated coal gasification 
power plant is composed of, among other things, a gas turbine, a steam turbine, a gasifier and a 
boiler (Seebregts et al., 2000). 
 
During the TEEM project, this concept was implemented rather ‘ad hoc’ and relatively cumber-
some. For each cluster, the analyst had to add a user-defined constraint (or in MARKAL termi-
nology: an ADRATIO). To be more flexible and to incorporate it in the most recent, Windows 
based user-interface, the MARKAL model was extended with the following equation (see Box 
3.1 MARKAL for GAMS source code): 
 
∀ key ∀ tp ≥start key: INV(key, tp) = Σ (tch in cluster of key) INV(tch, tp) × coupling  
factor(key, tch) 
 
Thus in words: For all key technologies, and for all time periods (tp) including and exceeding 
the start year of the key technologies, the investment in the key technologies is the weighted 
sum of all technologies within the corresponding cluster. The weight is the so-called coupling 
factor of the key technology with the underlying technology.  
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The corresponding data that need to be entered/added, either in ANSWER or separate as 
‘@INCLUDE’ in the MARKAL GAMS data file, is the assignment of the coupling factors via 
the table CLUSTER(TEG, TCH), where TEG is the set of key learning technologies (with asso-
ciated learning parameters). Set TEG defines the set of key technologies and is the label of the 
corresponding clusters. Set TCH defines the set of all technologies in the MARKAL model 
(TEG is a subset of  TCH). 
 
By default, CLUSTER(TEG, TCH) = 0. If CLUSTER(TEG, TCH) = cf ≠ 0 for a certain combi-
nation of two technologies A ∈ set TEG, and B ∈ TCH, say CLUSTER(A,B) = cf, then cf is the 
corresponding coupling factor.  
 
For SAPIENT, ECN has made 10 clusters of technologies comprising 60 technologies (mainly 
supply side but also a few demand side technologies i.e. fuel cell vehicles).  More details are 
given in Section 5.2.2. ‘Clusters of technologies’. 
 
Box 3.1  GAMS source code equation that couples investments on (learning) key technology 

level to investments of technologies in the corresponding cluster 
*mmequac.ml to be included at end of mmequa.inc/ms/reg 
*    %1 - equation name prefix ‘EQ’ or ‘MS’ or ‘MR’ 
*    %2 - SOW indicator => ‘‘ or ‘SOW,’ or ‘‘ 
*    %3 - coef qualifier => ‘‘ or ‘‘ or ‘_R’ 
*    %4 - variable/coef prefix => ‘‘ or ‘S_’ or ‘R_’ 
*    %5 - REGional indicator => ‘‘ or ‘‘ or ‘REG,’ 
*    %6 - regional scaling => ‘‘ or ‘‘ or ‘(REG)’ 
*    %7 - loop control set => ‘TPTCH(TP,TEG)’ or ‘TPNTCH(TP,SOW,TEG)’ or 
‘TPTCH_R(REG,TP,TEG)’ 
* 
*AS, 28/01/00 coupling equation for key in TEG to cluster TCH’s 
*only if TCH in cluster TEG and TEG NE TCH 
%1_CLU(%7)$((ORD(TP) GE 
TCH_STRT%3(%5TEG))*NTCHTEG%3(%5TEG))..%4INV(%5TP, %2TEG) =E= 
  SUM(TCH%3$(CLUSTER%3(%5TEG,TCH%3)*(ORD(TP) GE TCH_STRT%3(%5TCH))), 
      CLUSTER%3(%5TEG,TCH) * %4INV(%5TP,%2TCH) 
     ); 
 

3.3 Multiple runs feature 
Specifically meant for SAPIENT purposes, ECN modified the controlling MARKAL BATch 
file ‘ANS_RUN.BAT’. This file was changed in two ways: 
1. to enable a consecutive execution of either the Reference run plus the 10 corresponding 

R&D shock runs, or the Soft Landing run plus the 10 corresponding R&D shock runs, 
2. to enable the Monte Carlo experiments with MARKAL (See Chapter 4), with the number of 

runs set to 100, and with appropriate pre- and post-processing. 
 

3.4 Modification to MARKAL ETL output module 
The MARKAL ETL output module has been modified in two ways: 
1. to accommodate the new way of modelling clusters of technologies, 
2. to provide specific output needed for computation of some of the ISPA objectives. 
 
Table 3.1 presents a total overview of the MARKAL files affected and modified. 
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Table 3.1  Changed MARKAL controlling and source code files 
File type Specific Files modified 
Controlling BAT files ANS_GAMS.BAT 

(Changed version number and indicated files affected compared to 
previous version) 
ANS_RUN.BAT 
(changed in order to perform multiple runs, can be tailor made for 
specific R&D shock runs, or Monte Carlo runs) 

Standard MARKAL source 
code 

MMINCLUD.INC, MMINIT.INC, MMEQUA.INC, MODEL.MRK 

Specific ETL MARKAL 
source code 

Coefficients and equations files: 
MMCOEF.ML 
MMEQUAC.ML 

ETL Output module files: 
ATLEARN.ML 
ATLEARN1.ML 
ATSC.ML (includes specific ISPA objectives output: sales and 
investments learning technologies, CO2 emissions and energy 
system costs) 
ATLEARN8.ML 
ATLEARN9.ML 
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4. MARKAL MONTE CARLO EXPERIMENTS 

4.1 Introduction 
This section describes the experimental use of Monte Carlo analysis methods with the MAR-
KAL model. These experiments were conducted in the beginning of 2001 with the MARKAL 
model source code version of 2000. Monte Carlo analysis is a method to analyse and propagate 
data uncertainties in models. Figure 4.1 shows the principle of Monte Carlo analysis (MCA). 
 

PRINCIPLE MONTE CARLO
ANALYSIS

MARKAL
Model

N times run

MARKAL
Model

N times run
...

...
0

1

Distribution input 
parameters

Distribution endpoints

 
Figure 4.1  Principle of Monte Carlo Analysis with MARKAL 
 
MCA is a relatively time-consuming (i.e. computationally) method. However, with the current 
speed and memory capabilities of PC’s, Monte Carlo analysis with complex MARKAL models 
e.g. ECN’s MARKAL model for Western Europe now becomes feasible. Monte Carlo analysis 
can be used complementary to conventional MARKAL practices as (in decreasing order of fre-
quency of use):  
• Scenario analysis 
• Sensitivity analysis 
• Stochastic programming and  
• Cost-benefit analysis. 
These approaches are described in e.g. (ETSAP, 1999; Ybema et al., 1995, 1998).  
 
The MARKAL Monte Carlo experiments have been carried out as a kind of shadow calculation 
of the PROMETHEUS calculation. PROMETHEUS has been developed and used in the SAPI-
ENT project (SAPIENT, 2003). The marginal cost of CO2 reduction, as computed by PROME-
THEUS for e.g. the EU, is the basic parameter for comparison. Like PROMETHEUS, the 
MARKAL Monte Carlo experiments result in a probability distribution for this parameter. 
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4.2 Monte Carlo methods compared to other approaches 
To our knowledge, Monte Carlo (MC) uncertainty analysis methods have hardly ever - or even 
never - been applied to complex energy system models like MARKAL (see also Kann & Wey-
ant, 2000). The main reason is probably that Monte Carlo analysis methods generally require a 
lot of model runs in order to obtain stable and sensible results. With the current speed of PC’s 
and even with rather complex models like the EU MARKAL model, MC analysis is now feasi-
ble in terms of computational complexity and solution times. E.g. the ECN MARKAL long-
term scenario study (Ybema et al., 1998) comprised about 60 models runs (2 scenarios with 
about 30 variants and sensitivity analyses for each scenario).  From other type of MC analysis 
applications, it is known that even 100 runs can be sufficient to produce meaningful results if a 
stratified sampling method such as Latin Hypercube Sampling is applied (IAEA, 1989). From 
the first experiments conducted by ECN and reported here, it appears that MC analysis can be 
used in combination with scenario analysis, even with ECN’s Western European MARKAL 
model (e.g. see (Lako et al., 1998)) and including technology learning  (e.g. see Seebregts et al., 
2000).  
 

4.3 What type of uncertainties can be addressed? 
Monte Carlo analysis can give an indication of the parameter and data uncertainties within one 
particular scenario. The main results derived from a MC analysis are: 
• A probability distribution (and hence, indicators like means, variance, spread, percentile 

points) of the results of interest (‘endpoints’). 
• A ranking of the uncertain parameters based on their contribution to the uncertainty in se-

lected endpoints.  
 
The spread obtained this way can also show whether different scenarios can overlap in some in-
stances. Model structure, more methodological (e.g. using ETL or not/using 1FLC or 2FLC) un-
certainties and ‘incompleteness’ uncertainties cannot be dealt with this type of analysis. Sensi-
tivity analyses or analyses with different model variants are better suited to address such uncer-
tainties. 
 
In first instance, the parameters to be addressed in such an MC analysis should be restricted to 
parameters not typically characterising the scenario. So, typically uncertainties associated with 
technology characteristics are candidate to be included in a Monte Carlo analysis: Investment 
costs; O&M costs; efficiencies, maximum growth rates (e.g. due to production limits), physical 
potentials (e.g. onshore wind turbines), progress ratios, etc. However, parameters characterising 
the scenario parameters can also be included3. 
 

4.4 Example: Uncertainties in progress ratios solar PV and wind turbines 
The Monte Carlo (MC) experiments have been performed with the Soft Landing CO2 reduction 
limits (Blanchard et al., 2000), see also Section 5.3 ‘Scenario assumptions’. The focus has been 
on the uncertainties in progress ratios, in particular for solar PV and wind turbines. This section 
summarises the inputs and main results, including a comparison with PROMETHEUS results. 
Next, the development of investment cost and installed capacity is given as more conventional 
indicators of the market penetration of the two learning technologies. Finally, a comparison is 
made with 4 (traditional) deterministic analyses. 
 

                                                 
3  economic and demographic (energy demands, energy prices), market and production related (market penetration 

constraints, growth rates),  ‘environmental’ (resources, emission constraints, physical potential), discount rate 
(coupled to investment decisions) or the social rate of time preference. 
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4.4.1 Ranges for progress ratios 
Uncertainties in progress ratios, among others, are one of the key uncertainties associated with 
modelling of technological learning in energy models. E.g. from (Kram et al., 2000; McDonald 
& Schrattenholzer, 2001; and Junginger, 2000) the following ranges can be deduced for the 
progress ratio on specific (investment) cost. 
 
Table 4.1  Uncertainty ranges progress ratios solar PV modules and wind turbines (learning 

curve for inv. cost/kW(p)) 
Technology Kram et al., 2000 McDonald & 

Schrattenholzer, 2001 
Junginger, 2000 

Solar PV (modules) 0.72-0.85 0.80 - 
Wind energy, wind turbines 0.85-0.90 0.83-0.92 0.85-0.96 
 
Based on the various reported progress ratios in (Kram et al., 2000 and Junginger, 2000), the 
following probability distributions have been chosen. The ranges are based on (Junginger, 2000) 
for wind turbines, and on the range arising from the values used in the models MESSAGE, 
POLES, ERIS, and MARKAL (Kram et al., 2000)). The mean values are the values as derived 
by ECN (Seebregts et al., 1998). 
 
Table 4.2  Probability distributions progress ratios Solar PV and Wind turbines 
Technology Distribution Mean value Remarks 
Solar PV (modules) Uniform (0.76 ; 0.88) 0.82 - 
Wind energy,  
wind turbines 

Triangular  
(0.85 ; 0.90 ; 0.96) 

0.90 0.85 and 0.96 are about 5-th 
and 95-th percentile point 

 

4.4.2 Marginal cost CO2 reduction and comparison with PROMETHEUS 
The resulting marginal cost of reducing CO2 as computed from the MARKAL results is given in 
the next table. As can be seen, the mean values for 2010 and 2030 (128 and 63 euro) are much 
higher than the corresponding values from PROMETHEUS. For 2010 also the minimum and 
maximum differ a lot (2030 PROMETHEUS values other than the mean are not known). 
 
Table 4.3  Marginal Cost of CO2 reduction [€/tCO2]. Between brackets, the corresponding 

PROMETHEUS values [$95] 
 2010 2030 2040 2050 

Maximum 145 [54 $95] 67 76 99 
95-th perc. Point 141 67 75 98 
Mean 128 [15 $95] 63 [33 $95] 66 94 
5-th perc. Point 122 53 59 91 
Minimum 122 [0 $95] 52 56 91 
 



 

   ECN-C--03-032 18

0

50

100

150

200

250

0 10 20 30 40 50

Effective Carbon Value for the Eu to 2010
$95 per tonne of CO2

Observations 1000

Mean  14.99994
Median  14.22737
Maximum  52.20746
Minimum  0.000000
Std. Dev.  6.823279
Skewness  0.562761
Kurtosis  4.960381

Jarque-Bera  212.9124
Probability  0.000000

 
Figure 4.2  Distribution carbon value 2010 EU (from PROMETHEUS model runs) 
 

4.4.3 Development of investment cost and capacity 
The next tables show the results for the endpoints ‘Investment cost’ and ‘Capacity’ in de model 
years 2030 and 2050. As can be seen with respect to the progress ratios, the means and other 
distribution indicators are in line with the input distributions defined. The ranges in investment 
cost and capacity are rather large. It is important to note that the values now depicted as e.g. 5-th 
percentile point are not belonging to the same model run. A rather low cost of solar PV does not 
match with low values for capacity. In fact, the corresponding values for investment cost should 
be ‘mirrored’, i.e. a minimum for cost corresponds with the maximum for capacity. So e.g. 344 
€/kWp in 2030 for solar PV matches with 172 GWp capacity in 2030. 
 
The results show that the success of the two technologies is very dependent on the value of the 
progress ratio. In a few cases, solar PV does not enter the market, except on a level caused by a 
lower bound in the model. In a few other cases, solar PV goes to its maximum [300 GWp]. 
 
Table 4.4  Investment cost and capacity installed, 2030 and 2050, from 100 MC runs 
Results solar PV pr_PV 

(input) 
i.c.2030 
[€/kWp] 

i.c.2050 
[€/kWp] 

cap. 2030 
[GWp] 

cap. 2050
[GWp] 

      
Minimum 0.761 344 260 1 1 
5-th perc. Point 0.765 373 282 1 1 
Mean (input) (0.820)     
Mean 0.819 1833 1565 55 176 
95-th perc. Point 0.872 3619 3441 165 300 
Maximum 0.880 3767 3611 172 300 
Maximum (input value)    (300) (300) 
Results Wind turbines pr_wind 

(input) 
i.c.2030 
[€/kW] 

i.c. 2050 
[€/kW] 

cap. 2030 
[GWp] 

cap. 2050
[GWp] 

      
Minimum 0.863 322 271 42 77 
5-th perc. Point 0.870 360 309 58 102 
Mean (input) (0.900)     
Mean 0.904 559 500 82 155 
95-th perc. Point 0.938 765 718 129 245 
Maximum 0.954 934 876 134 245 
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4.4.4 Comparison with 4 deterministic cases 
The next figures show the results in the SL scenario with the mean values of the two progress 
ratios. In addition, a Base scenario plus two R&D impact variants are shown. The Base scenario 
is the variant without CO2 emission constraints. The R&D cases are cases with better progress 
ratios for solar PV (from 0.82 to 0.765, so to the lower limit of the MCA results distribution) 
and wind (from 0.90 to 0.897, so hardly any change). The changes in PR were made by applica-
tion of the indirect approach see Section 2.2. In this deterministic case, the maximum of 300 
GWp is not reached for solar PV, see Figure 4.4. From Figure 4.4. It also can be seen that the 
cumulative capacity bound has already been reached in 2040 in the SL R&D case. For wind en-
ergy, see Figure 4.5, the capacity in 2050 is about 150 GW in the SL R&D case, more or less 
equal to the mean of the MCA results (compare with table above). 
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Figure 4.3  Marginal cost of CO2 reduction (Base = without CO2 emission constraints; R&D = 

with better progress ratios) 
 
As can be seen, overall CO2 costs are lower in the SL R&D case. Since Base is unconstrained, 
CO2 cost equals zero. 
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Figure 4.4  Installed capacity solar PV (Base = without CO2 emission constraints; R&D = with 

better progress ratios) 
 
As can be seen, R&D leads to elevated levels both in constrained (SL) and unconstrained (Base) 
case (up to a user-defined upper capacity bound). The three capacity curves show an S-type 
penetration curve, caused by using a maximal annual growth rate that is effective in the first pe-
riods. In the Base case without additional R&D, solar PV does not become attractive.  
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Figure 4.5  Installed capacity Wind energy (Base = without CO2 emission constraints; R&D = 

with better progress ratios) 
 
As can be seen, only in the constrained (SL) case, R&D leads to somewhat elevated levels for 
wind energy. Extra R&D has no or hardly any impact. Note that in the R&D case, solar PV 
seems to win over wind turbines from 2020 on. 
 
It should be noted that the MC analyses and the SL/Base and R&D analyses outlined above, 
have been performed prior to the final MARKAL R&D shock runs, as reported in Chapter 5 . 
The main differences are the number of clusters (here: only 2; R&D shocks Chapter 5) and dif-
ferent bounds on the renewable technologies.  
 

4.5 Monte Carlo analysis as pre-processor of potentials and floor-costs 
MC analysis can also be used as a step prior to executing MARKAL calculations. It is for ex-
ample possible to test and check inputs of models, e.g. for technology learning parameters, it is 
possible to investigate the maximum potentials of learning technologies, as function of uncer-
tain inputs. This potential can be expressed as: floor cost (i.e. the lowest investment cost that 
can be achieved when a technology is fully employed up to its upper limits), maximum number 
of doublings or maximum capacity that can be reached within the model time horizon. Inputs 
needed for this are: progress ratio, initial cost, initial cumulative capacity and maximum cumu-
lative capacity. Uncertain parameters in this example are:  
Pr = progress ratio 
C0 = initial cumulative capacity (at start time horizon) 
Cm = maximum cumulative capacity (at end time horizon) 

 
Here an example is presented for the floor cost of solar PV modules. The distributions of the 
uncertain parameters are given in Table 3.5. 
 
Table 4.5  Example input distributions (EU MARKAL 1990-2050) 
Parameter Unit Distribution 
Progress ratio solar PV - Triangular (0,76; 0,82; 0,88)
Initial cumulative capacity solar PV GWp Uniform (0,05; 0,15) 
Maximum cumulative capacity GWp Uniform (400; 800) 
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An example of output displayed as Tornado diagram, is given below in Figure 4.6. This figure 
shows a Tornado diagram for the endpoint ‘floor cost’. As can be seen, the uncertainty in the 
progress ratio mostly determines the uncertainty in the floor cost. The higher the progress ratio 
(pr), the higher the floor cost (i.e. less learning potential). The higher the maximum cumulative 
capacity, the lower the floor cost (hence, more learning). The higher the initial cumulative ca-
pacity (C0), the higher the floor cost (i.e. less learning potential).  Figure 4.7 shows the cumula-
tive distribution function of the floor-cost of solar PV. A mean value of 560€/kWp is computed 
for 2050. 
 

 Solar PV-modules / Cm/G9

Correlation Coefficients

 

 

 

                  

   Solar PV-modules / Co/F9  0.111

-0.241

   Solar PV-modules / pr/C9  0.973
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Figure 4.6  Example of Tornado diagram: more important uncertain input parameters are listed 
on top (figure directly copied from @Risk C9, G9, and F9 refer to Excel cells) 
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Figure 4.7  Distribution of floor cost (figure directly copied from @Risk) in 2050 
 
Possibly, the life of a technology, bounds like maximum annual growth rates, capacity upper 
bounds or investment upper bounds can be added to further determine the maximum potential or 
the uncertainty. These latter parameters may result in a better estimate of first maximum cumu-
lative capacity [Cm] as input to the actual MARKAL run with endogenous learning. However, 
this has not been done in the SAPIENT project. 

Values in Thousands



 

   ECN-C--03-032 22

 
Table 4.6  Progress ratios selected for the MARKAL clusters of learning technologies 
Code Description Progress 

Ratio 
Max. annual 
growth factor 

Source of information or rationale 

1. ESK Solar PV 
modules 

0.82 1.35 from 
1990-2000 

1.25 
thereafter 

Updated from 0.81 from (Seebregts et al., 
1998,) Section 3.4.1 to 0.82. (de Lange & 
Crommentuijn, 2000) show that 1.25 annual 
growth over longer periods (2000-2050) is 
rather optimistic 

2. EWK Wind turbine 0.90 1.46 from 
1990-2001 

1.25 
thereafter 

PR Value has been underpinned in 
(Seebregts et al., 1998) Section 3.4.2 (de 
Lange & Crommentuijn, 2000) show that 
1.25 annual growth over longer periods 
(2000-2050) is rather optimistic 

3. FCK Fuel cell 0.82 - Value has been underpinned in (Seebregts et 
al., 1998) Section 3.4.3 

4. GFK Gasifier 0.9 - Generic value used in (Seebregts et al., 
1999) which was based on (Neij, 1997) with 
gasifier termed as ‘advanced’ technology 

5. GTK Gas turbine 0.87 - No recent statistics or references available, 
decided to use ‘old’ IIASA value (up to 
1980) as estimate (McDonald & 
Schrattenholzer, 2001) 

6. HYK Hydro turbine 0.997 - 1FLC fitted by ECN from base data derived 
from data supplied with (Criqui, 2001) 

7. STK Steam turbine 0.99 - 0.99, as generic value for a more 
conventional technology that hardly learns 

8. BOK Boiler 0.99 - 0.99, as generic value for a more 
conventional technology that hardly learns 

9. CCK Combined cycle 
boiler 

0.95 - 0.95, more advanced than a conventional 
boiler, and therefore a better progress ratio 

10. NUK Nuclear reactor 0.99 - 0.99, as generic value for a more 
conventional technology that hardly learns 

 

4.6 Use of @Risk as pre and post-processor of MARKAL runs 
The @RISK software (Winston, 1999) has been used as pre-processor and post-processor of the 
MARKAL runs; @RISK is an Excel add-on. The series of input samples are made using 
@Risk. Output of @Risk has been converted to appropriate text data (‘DD’ files in MARKAL 
terminology) files to be used in the ANS_RUN.BAT file. The uncertainty measures, i.e. correla-
tion coefficients between inputs and results are computed afterwards. The next box provides 
some more details of the sequential steps.  
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Box 4.1  MARKAL-1. Detailed steps 
1. Establish uncertain input parameters and their distributions (in the first test with a 

MARKAL learning model: only progress ratios for Solar PV and Wind turbines, just to 
illustrate the approach) -> IN @Risk. 

2. Generate input sample (for each of the M scenarios/variants) -> IN @Risk and Excel: inputs 
are also selected as output in order to obtain samples from @Risk.  
Colums in @Risk Data Window are copied to a separate XLS file. This last XLS file is 
edited somewhat, written to a text file. 

3. Convert these samples to MARKAL input files in the appropriate format 
With BAT and Pascal utility program: Text file from step 2 is processed to appropriate 
format. For each sample a separate file is made.  

4. Run MARKAL M x N (N=100) times. 
5. Derive the endpoints from these results. CO2 emissions, capacities of (selected) 

technologies. 
6. Derive spread, distribution of these endpoints/indicators and correlations with the uncertain 

input parameters, or correlations between outputs. 
 
Step 1-3 is a kind of pre-processing (outside MARKAL) 
Step 4-5 is integrated into MARKAL source and batch files (only 1 GAMS source file that to 
filter the relevant and desired endpoints (results) in each run and 1 DOS BAT file 
(ANS_RUN.BAT) file.  
 
All other MARKAL/ANSWER source files can be left unchanged. 
Step 6 is a post-processing (outside MARKAL and preferable in @Risk since it contains a 
number of useful features). 

 

4.7 Conclusions experiments 
Despite the limitations in the MC analyses (e.g. only 2 clusters of learning technologies, only 
progress ratios as uncertain parameter), we conclude from these experiments: 
• Monte Carlo analysis can be applied for complex MARKAL models. 
• Further research is needed to conclude definitely that it is a feature to be included as ‘mem-

ber’ of the official family of MARKAL models (Seebregts et al., 2001). 
• The uncertainty in the input data for learning can be analysed well with a combination of 

sensitivity analyses and Monte Carlo analyses.  
• The uncertainty range in the wind turbine progress ratio (PR), as derived from literature 

(0.83-0.96, see Table 4.1), is much larger than the impact of R&D on the progress ratio (see 
also Table 5.9 in next chapter). Therefore, given the impact from the R&D assumption on 
the wind turbine PR, for wind turbines no robust conclusions can be derived solely on R&D 
impacts. The uncertainty in the PR, which can be caused by a variety of factors, seems far 
more important. This finding supports the idea that it is more important to obtain good data 
for the one-factor learning curve parameters, than to introduce a more complex two-factor 
learning curve (either indirect or direct). 
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5. IMPACT OF R&D (‘SHOCKS’) ON POLICY OBJECTIVES 
USING MARKAL 

5.1 Introduction 
This chapter describes the results of the EU MARKAL runs for the SAPIENT project (MAR-
KAL SAPIENT 2001 database). It is structured as follows. In Section 5.2 assumptions on tech-
nologies data, including the concept of clusters of technologies and bounds applied will be pre-
sented. Section 5.3 discusses assumptions on scenarios and R&D ‘shocks’ that are applied in 
variants. Section 5.4 briefly discusses the type of results. The results themselves are presented in 
Section 5.5. The chapter ends with some conclusions and recommendations. 
 

5.2 Technologies: data and other assumptions 

5.2.1 MARKAL SAPIENT 2001 database 
In the TEEM (Energy Technology Dynamics and Advanced Energy System Modelling) project, 
the predecessor of SAPIENT, the European MARKAL database was used (Seebregts et al., 
2000). For the SAPIENT project, this database has been extended with biomass technologies 
based on the more detailed MATTER data (Gielen et al., 2000). The most important changes 
(i.e. on bounds) are discussed in Section 5.2.4. 
 

5.2.2 Clusters of technologies 
Approach 
The approach followed by ECN Policy Studies on the modeling of technological progress in the 
MARKAL Europe model uses the concept of ‘clusters of technologies’ (Seebregts et al., 2001). 
In total, 10 clusters of learning technologies are implemented, representing in total 60 technolo-
gies. A ‘cluster of technologies’ is defined as a group of technologies sharing a common essen-
tial component. 
 
This component, which can be a technology in itself, is called the ‘key technology’ and is se-
lected as the learning component in each of the technologies in the cluster. Examples of key 
technologies and, correspondingly, clusters of technologies are gas turbines, fuel cells, photo-
voltaic (PV) modules, wind turbines, burners and boilers. 
 
The existing technologies need to be grouped into clusters of technologies which are similar 
with respect to their learning behavior i.e. the development of these technologies is in some way 
linked to each other. One technology can appear in more than one cluster. For example, an inte-
grated coal gasification power plant is composed of, among other things, a gas turbine, a steam 
turbine, a gasifier and a boiler (Seebregts et al., 2000).  
 
To implement the concept of clusters in MARKAL, the following approach has been followed: 
• Identify the clusters and key technologies from the technology database. 
• Review the characteristics of the technologies in each cluster. 
• Add the common component as key technology to the technology database. 
• Make the key technology a learning technology and assign the learning parameters to it. 
• Assign a coupling factor to the key technology and the technologies in the corresponding 

cluster. 
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• Calibrate all learning parameters so that they are in line with the currently available cost and 
capacity data. 

• Adjust the characteristics of the remaining parts of the technologies in the corresponding 
cluster. 

 
When considered necessary, adjust the bounds (or other parameters) of the key technologies or 
the technologies in the clusters. All steps described above have been gone through during the 
TEEM project in which the concept of clusters of technologies has been tested (Seebregts et al., 
1999; Seebregts et al., 2000). During the SAPIENT project the model has been improved. Be-
sides the extension of the number of technologies in the database (as mentioned above), also the 
number of clusters has been doubled (from five to ten). Therefore, we will now concentrate on 
step 1 of the approach: identification of clusters and key technologies in SAPIENT. 
 
Identification of clusters 
The approach described above was applied for the clusters (last five are new compared to 
TEEM): wind turbines (WT), solar PV modules (PV), fuel cells (FC), gasifiers (GF), gas tur-
bines (GT), hydro turbines (HY), steam turbines (ST), boiler (BO), combined cycle boiler (CC) 
and Nuclear Reactor (NU). These ten clusters together represent in total about 60 individual 
MARKAL technologies. For SAPIENT, these clusters and technologies have also been mapped 
to the POLES technologies. The mapping from our clusters to the 24 POLES technologies is not 
a 1-to-1 relationship. The technologies (incl. their codes) considered in MARKAL and POLES 
are summarized in Annex A. 

Table 5.1 summarizes the clusters and key technologies used in MARKAL. In total 59 tech-
nologies are involved. Because of the fact that some of the technologies belong to more than 
one cluster, the numbers in Table 5.1 add up to 123. 

Table 5.1  Clusters of learning technologies 
Code Description # technologies in cluster 
ESK Solar PV modules 5 
EWK Wind turbine 4 
FCK Fuel cell 11 
GFK Gasifier 15 
GTK Gas turbine 23 
HYK Hydro turbine 5 
STK Steam turbine 29 
BOK Boiler 14 
CCK Combined cycle boiler 16 
NUK Nuclear reactor 1 
 

Table 5.2 illustrates the cluster of gasifier technologies. As indicated in Table 5.1, for the key 
technology ‘gasifier’, the cluster consists of 15 technologies. The cumulative installed capacity 
for gasifiers is based on the combination of the capacities of these 15 individual technologies. 
Table 5.2 also clearly illustrates that technologies can belong to more than one cluster. 
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Table 5.2  Clusters of gasifier technologies 
Description Key/cluster 
Lignin gasifier large industrial cog. GTK STK GFK 
Wood gasification small industrial cog. GTK STK GFK 
Wood gasification CC power plant GTK STK GFK CCK 
Biomass gasifier dedicated CC (NH) GTK STK GFK CCK 
Biomass gasifier SOFC GTK STK GFK FCK CCK 
IGCC with co-gasification of biomass GTK STK GFK CCK 
Biomass gas turbine plant GTK GFK 
Biomass gasifier dedicated CC (NH) STW GTK STK GFK CCK 
Biomass gasifier FT-fuel/ele co-prod GTK STK GFK CCK 
Integrated coal gasification power plant GTK STK GFK CCK 
Integrated lignite fired power plant GTK STK GFK CCK 
Integrated Coal Gasification SOFC plant GTK STK GFK FCK CCK 
Existing CC power plant GTK STK GFK CCK 
Waste to energy plant (Lurgi gasifier) STK GFK 
Waste to energy plant (Gibros PEC) STK GFK 
 
Each technology is composed of (or in other words can be coupled to) one or more key tech-
nologies. As explained earlier, a key technology is the learning component in each of the tech-
nologies in a cluster. However, besides the learning part of a technology (i.e. the part consisting 
of one or more key technologies), also a non-learning part exists.As an example to explain the 
use of so called ‘coupling factors’ in MARKAL, we take an integrated coal gasification (or 
IGCC) power plant. According to Table 2 this technology belongs to four clusters of key tech-
nologies, i.e. gas turbine, steam turbine, gasifier and combined cycle boiler. Coupling factors 
‘couple’ the 10 key technologies to the 60 technologies that are actually learning in MARKAL. 
The actual value of the coupling factor is based on the output capacity of the technology con-
cerned. For a combined cycle-gasifier combination (as in the example) it is assumed that 60% of 
the capacity is in the gas turbine and the other 40% is in the steam turbine. Correspondingly, the 
coupling factor for the gas turbine is 0.6 and for the steam turbine is 0.4. 
 
The coupling factors are for instance used to calculate the (remaining) investment costs of the 
non-learning part for each technology. The investment of the learning part is determined by the 
combination of key technologies. For the IGCC the breakdown of investment costs is illustrated 
in Table 5.3. 
 
Table 5.3  Example of cost breakdown IGCC (in €1995/kW installed capacity) 
Technology Cost Coupling factor 
New integrated coal gasification p.p. (as a whole) 1510  
Gas turbine (as key) 
Steam turbine (as key) 
Gasifier (as key)  
CC boiler (as key) 

380 
300 
640 
450 

0.6 
0.4 
1.0 
0.4 

 
A complete new integrated coal gasification power plant in total costs 1510 €/kW installed. Of 
these costs, 0.6 × 380=228 €/kW is related to the costs of the gas turbine. Correspondingly,  
0.4 × 300=120 €/kW is related to the costs of the steam turbine. The so-called ‘non-learning part 
investment cost’ is defined as the ‘total investment costs of a new technology - weighted in-
vestment costs of the corresponding key technologies’. In this example, the non-learning part 
(referring to 2000) is then calculated as follows: 

1510 - { 0.6 × 380 + 0.4 × 300 + 1.0 × 640 + 0.4 × 450 } =  1510 - 1166 = 342  
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The weighted investment costs of the four key technologies sum up to 77% (i.e. 1166/1510) of 
the total investment costs of the new integrated coal gasification power plant. For 2010 and fur-
ther, the ‘non learning part investment cost’ in the EU MARKAL database becomes 
(342/1510=) 0.23 × original value (i.e. the value used before the concept of clusters including 
the accom-panying cost breakdown was introduced; in the case of an IGCC this value is 1510). 
In Annex B, a summary is given of all the coupling factors that are used in the SAPIENT pro-
ject.  
 

5.2.3 Learning parameters 
To the extent possible, learning parameters have been updated and harmonized with IEPE’s da-
tabase (Criqui, 2001). Both the alternative approach of two-factor learning curves in MARKAL 
and the estimation of the progress ratios for the MARKAL clusters of learning technologies 
have used IEPE’s database as a source of information.  
 
Other learning parameters (i.e. initial and maximum cumulative capacity, growth factors, con-
straints) have been selected largely based on the original MARKAL TEEM database. Table 5.4 
gives an overview of most important learning parameters of key technologies implemented in 
the SAPIENT database. For clarification, a few definitions will be given below (Seebregts et al., 
2000). 
 
Progress ratio 
The progress ratio expresses the rate at which the cost declines each time the cumulative capac-
ity doubles. E.g. a progress ratio of 0.8 means that the costs per unit of newly installed capacity 
decrease by 20% each time the cumulative installed capacity is doubled. The progress ratio thus 
constitutes a key factor for technological progress because it determines the speed of learning 
for the technology. 
 
Initial costs 
The initial costs form part of the costs of each technology belonging to the cluster. The initial 
costs (for 1990) are calibrated based on the costs of the technology today (i.e. the cost 2000). 
The costs for the year 2000 are used to calculate the investment of the learning part of a tech-
nology, as was shown in Table 5.3. 
 
Initial cumulative capacity 
The initial cumulative capacity of all technologies in a cluster can be derived from the original 
database (i.e. without learning) by adding the residual capacities for the year 1990 and the ca-
pacity installed during the period 1990-1999 of the separate technologies. Current capacity fig-
ures (e.g. for wind energy in Western Europe nowadays (beginning of 2002) already 13 GW is 
installed) have been used to calibrate the initial capacity data.  
 
Maximum cumulative capacity 
The maximum cumulative installed capacity is defined for the year 2050. The common value of 
1000 GW (except steam turbines, for which 1500 GW was taken) was taken arbitrarily, but 
turned out well. For each key technology, the cumulative capacity in a certain period is calcu-
lated by the weighted sum (based on the coupling factors) of the cumulative installed capacities 
of the technologies in the specific cluster. 
 
Implied floor costs 
The implied floor costs are the costs when the maximum cumulative capacity is reached in 
2050, i.e. this is the minimum level of costs that can be reached for a certain technology. The 
percentage of cost reduction is a good measure for the innovative nature of the technology and 
hence of its learning potential. E.g. for solar PV modules a cost reduction of approx. 93% is 
maximally possible, based on the parameters and learning parameters used. 
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Table 5.4  Learning parameters of key technologies 
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Solar PV  0.82 7500 4000 0.1 1000 537 7.2 13.3 
Wind turbine 0.90 1400 800 0.147 1000 366 26.2 12.7 
Fuel cell 0.82 2650 1325 0.08 1000 178 6.7 13.6 
Gasifier 0.9 800 640 0.65 1000 262 32.8 10.6 
Gas turbine 0.87 450 380 31.9 1000 225 50 5 
Hydro turbine 0.997 300 300 23 1000 295 98.4 5.4 
Steam turbine 0.99 300 300 250 1500 292 97.4 2.6 
Boiler 0.99 510 510 122 1000 508 99.6 0.45 
CC boiler 0.95 500 450 1.17 1000 331 66.2 8.1 
Nuclear  0.99 1940 1940 118 1000 1881 97 3.1 
 

5.2.4 Bounds 
It would go too far to elaborate on all the bounds applied in the model. Therefore, only capacity 
bounds on the key technologies ‘Solar PV modules’ and ‘Wind turbines’ will be briefly dis-
cussed here. For a complete overview of individual technology bounds applied, see Annex C. 
 
Solar PV 
For Solar PV, a minimum capacity bound of 3 GW (2010) was introduced, corresponding to the 
EU White Paper (1997). This was modelled as follows: 
 
Table 5.5  Lower capacities bound on total Solar PV in GW (scenario NOREBNDS) 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATSOLARLO Total Solar PV  

(= ∑ES1-ES5) 
0 0 3 3 3 3 3 

 
Wind 
The potentials for Wind (onshore and offshore) are based on the latest DG TREN scenarios 
(LREM modelling, 2002). This was modelled as follows: 
 
Table 5.6  Upper capacity bounds on Wind in GW (scenario NOREBNDS) 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATWTON Total wind onshore 

(EW4+5) 
1 13 72 103 123 130 136 

RATWTOFF Total wind offshore 
(EW6+7) 

0.09 0.5 6.5 57 103 135 148 

 
For offshore Wind, also a minimum capacity bound of 5 GW (2010) was introduced, based on 
the prognoses of EWEA (EWEA, 2001). This was modelled as follows: 
 
Table 5.7  Lower capacities bound on offshore Wind in GW (scenario NOREBNDS) 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATWTOFFLO Total wind offshore 

(EW6+7) 
0 0 5 5 5 5 5 
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5.3 Scenario assumptions 
Base cases and variants 
The baseline scenario (or the Reference Run) to be used in the model runs is the so called ‘Mar-
ket Drive’ scenario with high renewable (abbreviated ‘MD-hr’ and described in Seebregts et al., 
2000) including CO2 costs of 15 €/ton till 2010 and 33 €/ton till 2030 (as agreed upon in the 
project). ECN has not harmonized the MARKAL MD-hr scenario with the POLES reference 
scenario and IIASA A1B scenario, except for a technology mapping of MARKAL and POLES 
technologies, and comparison of progress ratios used. 
 
At the request of the European Commission, the overall (social) discount rate used will be 4% 
throughout. The calculation period is 1990-2050 (7 time periods of 10 years). The results to be 
used as an input to the ISPA model, are reported till 2030. Other results will be reported till 
2050. 
 
Besides the baseline scenario or Reference Run, the following variants of the baseline will be 
calculated: 
• R&D ‘shocks’ (see below) 
• ‘Constrained CO2’ case translated from the POLES ‘Soft Landing Stabilization’ scenario 

(described in Blanchard et al., 2000). This runs are done as a kind of expected carbon 
limitation scenario, since based on previous ECN experiences (Kram et al., 2001; Gielen et 
al., 2000; Lako et al., 1998) with the carbon values as agreed (i.e. 15 €/ton till 2010 and 33 
€/ton till 2030) no significant CO2 reduction is achieved. Table 5.8 shows the applied CO2 
constraints in this scenario (from now on referred to as ‘Soft Landing’). 

 
Table 5.8  CO2 constraints in the Soft Landing scenario (as percentage of 1990 level) 
 1990 2010 2030 2050 
EU MARKAL target CO2 based on Kyoto 1,2,3 100 92.0 84.6 77.9 
EU MARKAL target CO2 in % 1990 based on 
POLES reductions Soft Landing Scenario 

100 90.2 82.2 78.4 

 
• This leads to 4 cases and variants: 

1. Baseline (Reference Run RR) 
2. Baseline plus R&D ‘shocks’ (RR+Shocks 1-10) 
3. CO2 constraints according to Soft Landing figures POLES (SL) 
4. Soft Landing plus R&D ‘shocks’ (SL + Shocks 1-10). 

 
R&D assumptions (‘shocks’) 
An additional R&D injection (‘shock’) will be applied on every key technology separately, i.e. 
this leads to a total of 10 so-called ‘shock’ runs. The R&D shock will be modeled in the time 
period designated as 2000. The effect of the R&D shock is assumed to be permanent i.e. the 
progress ratio will remains at the lowered value as a result of the shock. 

As stated, the shocks will be applied at cluster level and the magnitude of the shock [in M€] will 
be fixed so as to achieve a significant4 effect on the learning rate of the key technology in-
volved. This is done to get an effect of the applied R&D-shock in the runs that serve as an input 
for the ISPA-model. Note that in the ISPA-model, the effect will be calculated per additional € 
of R&D, and therefore the actual size of the applied shock doesn’t matter. As was already elabo-
rated in Chapter 2, the additional R&D will have impact on the progress ratio according to rela-
tionship following relation: ∆PR = ∆R&D-intensity × -0.289. 
 
                                                 
4  By 'significant' we mean a progress ratio improvement of at least 0.03 (but preferably 0.05).  Such changes often 

changed the outcome of the model, based on experience with past MARKAL runs with learning. So, we set 0.03 as 
a target to cause the model to generate other solutions. However, for some technologies such a change could not or 
hardly be generated (see Table 5.9). 
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Table 5.9 summarizes the resulting shocks as applied at cluster level, including the impact of the 
additional R&D on the progress ratio (since in the MARKAL model the R&D shock is actually 
modeled as an ‘improved’ progress ratio). The parameter in Table 5.9 n is defined as the ‘level 
of the additional R&D-shock’ divided by the ‘level of the intended cumulative R&D for the pe-
riod 2001-2010’, and is a measure of the relative level of the shock. As can be seen from Table 
5.9, even a twenty-fold increase of the cumulative R&D for solar PV does not seriously effects 
its PR. Furthermore, an additional R&D input of over one 100 billion € for fuel cells has no se-
rious impact on it’s PR, and consequently n is very large. This is due to a very low level of in-
tended cumulative R&D (i.e. projected cumulative R&D 2001-2010, calculated based on the 
projected cumulative sales in the same time period), and should therefore not be valued as ‘un-
realistic’. The same holds for hydro turbines and common boilers. 
 
Table 5.9  New Progress Ratio (PR) after R&D shock (in M$98) 
Cluster PR R&D 

Shock 
n New PR ∆PR ∆R&D Inten-

sity 
Solar PV modules 0.82 355000 21.7 0.792 0.028 0.10 
Wind turbine 0.90 22000 2.5 0.85 0.049 0.17 
Fuel cell 0.82 100000 654 0.791 0.029 0.10 
Gasifier 0.9 1000 1.4 0.85 0.050 0.17 
Gas turbine 0.87 5000 1.5 0.82 0.048 0.17 
Hydro turbine 0.997 2000 2023 0.94 0.055 0.14 
Steam turbine 0.99 6400 5.6 0.901 0.089 0.31 
Boiler 0.99 4150 14.7 0.894 0.096 0.33 
Combined cycle boiler 0.95 3000 1.0 0.90 0.049 0.17 
Nuclear reactor 0.99 17500 1.0 0.94 0.049 0.17 
 

5.4 Type of results wanted: R&D Objectives measurement 
The following R&D objectives that can be used as inputs for the ISPA model, are calculated 
from the MARKAL results. All results are calculated for the period is 1990-2030, but since the 
model is calibrated for 1990, changes are related to 2000-2030. 
• The measure of market impact (‘profitability’). This is defined as: 

Discounted {(R&D induced technology cost + reference technology cost) × change in equip-
ment sales volume} / R&D expenditure shock 

• The measure of impact on the CO2 limitation objective. This is defined as: 
Change in cumulative emissions/R&D expenditure shock 

• The measure of cost reductions to the consumer. This is defined as:  
{R&D induced total discounted cost to the consumer - reference total discounted cost to the 
consumer} / R&D expenditure shock 

A fourth objective - the measure of the impact of security of supply - cannot be calculated as 
such, since oil and gas prices are exogenous inputs of the MARKAL model. As an alternative, 
the cumulative use/extraction of resources/imports could have been used in MARKAL. How-
ever, this measure did not fit into the ISPA model. 
 
It was decided not to include (in ISPA) the fifth objective earlier defined, i.e. the measure of the 
impact on employment, because of lack of data on employment in the manufacture and devel-
opment of technologies. This objective cannot be computed by MARKAL.  
 
The results will be discussed in Section 5.5. 
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5.5 Results 
Two sets of runs will be discussed here (referred to as ‘set 1’ and ‘set 2’): 
• Reference Run plus shocks (1-10) 
• Soft Landing plus shocks (1-10). 

First the ISPA inputs will be treated followed by (a selection of) other results. 

5.5.1 ISPA inputs  
Tables 5.10 and 5.11 show the ISPA objective values (as defined in Section 1.4) for run sets 1 
and 2. The objectives are calculated from the model results as follows (NPV = net present 
value). All results are calculated for the period is 1990-2030. 
 
• Impact on market profitability (unit M€/M€): 

NPV1990 [(specific technology cost in the ‘Shock Run’ + specific technology cost in the Ref-
erence Run)×  10 × (investments in units of technology in the ‘Shock Run’ - investments in 
technology in the Reference Run)]} / R&D expenditure shock 

• Impact on CO2 limitation objective (unit Mton CO2/M€): 
(10 x cumulative CO2 emissions in the ‘Shock’ Run’ - 10 x cumulative CO2 emissions in the 
Reference Run) / R&D expenditure shock 

• Impact on cost reductions to the consumer (unit M€/M€): 
NPV1990 (10 × energy system costs of the ‘Shock Run’ - 10 × energy system costs of the Ref-
erence Run) / R&D expenditure shock  
 

The value of the energy system costs is used as a proxy for the costs to consumer. 
The factor 10 appears from the fact that individual values reported represent the average of a 10 
years’ period, e.g. the value reported for the year ‘2000’ is actually the average of the period 
1995-2005. 
 
Table 5.10  Objectives measurement Reference Run + Shocks (1-10) 
Case i.e. ‘shock’ on 
technology  

NewPR 
(in case) 

R&D 
shock 
M€ 

Impact 1) 
onmarket 
(‘profitability’
)M€/M€ 

Impact on CO2 
1) 

limitation objective 
Mton CO2/M€ 

Impact on cost 
1) reductions to 
the consumer 
M€/M€ 

Solar PV modules 0.792 355000 0.0 0.0 0.0 
Wind turbine 0.85 22000 0.0 0.0 0.0 

Fuel cell 0.791 100000 0.0 0.0 0.0 
Gasifier 0.85 10002) 6.1 -0.8 2) -0.3 2) 

Gas turbine 0.82 5000 0.0 0.0 0.0 
Hydro turbine 0.94 2000 0.0 0.0 0.0 
Steam turbine 0.90 6400 1.3 0.0 -0.2 
Boiler 0.89 4150 8.1 0.1 0.1 
Combined cycle boiler 0.90 3000 0.2 0.0 0.0 
Nuclear reactor 0.94 17500 0.0 0.0 0.0 
1) 0.0 means no impact  
2) the corresponding value of the objective in the Reference Run: 185277 Mton CO2; 30637 bln € system costs 

-0.8 means 0.8 × 1000 = 800 Mton CO2 less, 0.3 means  
-0.3 × 1000 = 300 bln € less costs 

 
Profitability 
As can be seen from Table 5.10, the impact on profitability in general is negligible: only the 
boiler, gasifier and to a lesser extent also the steam turbine are ‘profitable’ in terms of market 
impact. For every € invested in ‘boiler R&D’ over 7 € extra will be earned. Correspondingly, 
for every € invested in ‘gasifier R&D’ over 5 € extra will be earned. It must be kept in mind 
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though, that this is not a linear relationship. Results are dependent on the absolute level of the 
shock applied (i.e. on the progress ratio improvement that is achieved). 

It is remarkable that according to these results, renewable technologies (like Solar PV, Wind 
and Hydro) seem not to be favoured from an R&D policy point of view. This even holds for 
biomass applications, for although R&D investments in gasifiers does pay off, the majority of 
the gasifiers are installed in integrated coal gasification power plants. 
 
CO2 emissions 
As with profitability, the impact on CO2 limitation in general is negligible. This can of course be 
explained by the equally negligible impacts on profitability: if a technology is not implemented 
(like e.g. in the cases with solar PV modules and wind turbines) emissions won’t be effected. In 
the case of gasifiers, every € invested in gasifier R&D leads to 0.8 Mton of extra CO2 emission 
reduction. In absolute terms however, this corresponds to 788 Mtons only (i.e. less than 0.5% of 
the Reference Run emissions). In the case of boilers, R&D shocks lead to an increase of CO2 
emissions, so here the effect of R&D shocks is a negative one (though in absolute terms again 
the effects are marginal, i.e. 0.3% or less). Negative effects (or increasing emissions) are expli-
cable in cases where conventional, fossil fuel based technologies (like boilers) are implemented. 
The fact that the effects of R&D shocks are negligible in all cases (i.e. also when renewable 
technologies are stimulated) clearly demonstrates that the carbon values as applied (i.e. 15 €/ton 
CO2 till 2010 and 33 €/ton CO2 till 2030) are no stimulus for CO2 reduction. As was stated ear-
lier, this confirms the results of former runs with the EU MARKAL model for different projects, 
where only at carbon values above 100 €/ton CO2 emissions are reduced (see e.g. Gielen et al., 
2000). 
 
Once again, it is mentioned here that in absolute terms, the total emissions stay more or less 
constant. The change in cumulative CO2 emissions (that result from a ‘shock’ run) is in all cases 
smaller than (plus or minus) 0.5% when compared to the Reference Run. The corresponding 
amount of CO2 varies from 508 Mton (in case of boilers) to -788 Mton (in case of gasifiers).  
 
Costs to the consumer 
As stated above, the value of the energy system costs is used here as a proxy for the costs to the 
consumer. As can be seen from Table 5.10, again the impact on cost reductions to the consumer 
in general is negligible and in non of the cases. The R&D investment is ‘profitable’ in terms of 
‘costs to consumer impact’: for every € invested in ‘technology R&D’ either nothing or less 
than 1 € will be earned (i.e. costs are reduced). In the case of the boiler the costs to the con-
sumer actually increase. A negative value in Table 5.10 corresponds to a reduction in costs 
when compared to the Reference run.  
 
Table 5.11  Objectives measurement Soft landing + Shocks (1-10) 
Case i.e. ‘shock’ on 
technology 

New 
PR (in 
case) 

R&D 
Shock 
M€ 

Impact on mar-
ket (‘profitabil-
ity’) M€/M€ 

Impact on CO2 1) 

limitation objective 
Mton CO2/M€ 

Impact on cost 1) 

reductions to the 
consumer M€/M€ 

Solar PV modules 0.792 355000 0.0 0.0 0.0 
Wind turbine 0.85 22000 0.0 0.0 0.0 
Fuel cell 0.791 100000 0.0 0.0 0.0 
Gasifier 0.85 1000 12.2 0.0 -0.7 
Gas turbine 0.82 5000 0.2 0.0 0.0 
Hydro turbine 0.94 2000 0.1 0.0 0.1 
Steam turbine 0.90 6400 0.0 0.0 0.0 
Boiler 0.89 4150 0.3 0.0 -0.1 
Combined cycle boiler 0.90 3000 0.4 0.0 0.1 
Nuclear reactor 0.94 17500 0.0 0.0 0.0 
1) 0.0 means no impact, the corresponding value of the objective in the Soft Landing: 160351 Mton CO2 
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Profitability 
As can be seen from Table 5.11, the impact on profitability in general is negligible: now only 
the gasifier is ‘profitable’ in terms of market impact: for every € invested in ‘gasifier R&D’ over 
11 € extra will be earned. Unlike in the Reference Run plus shocks, here the gasifier is the only 
profitable technology. Again boilers and turbines have a small positive effect in terms of profit-
ability, but the invested € won’t be paid back.  
 
CO2 emissions 
In terms of CO2 limitation, in all cases the R&D shocks have no effect on the CO2 emissions. 
This can be explained by the fact that in this case (i.e. Soft Landing scenario) maximum CO2 
emission levels (based on the Kyoto target) are set, which the model has to accomplish (see also 
Table 5.8). 
 
Costs to the consumer 
As can be seen from Table 5.11, again the impact on cost reductions to the consumer in general 
is negligible and in none of the cases, the R&D investment is ‘profitable’ in terms of ‘costs to 
consumer impact’: for every € invested in ‘technology R&D’ either nothing or less than 1 € will 
be earned (i.e. costs are reduced). In the cases of hydro turbines and combined cycle boilers the 
costs to the consumer actually increase. A negative value in Table 5.11 corresponds to a reduc-
tion in costs when compared to the Reference run.  
 
Reference Run vs. Soft Landing 
By comparing Tables 5.10 and 5.11, it is evident that in the Soft Landing Scenario the cumula-
tive emissions are significantly lower than in the Reference Run (difference is 13%). However, 
this decrease is realized at significantly higher system costs (of 36 billion €, corresponding to 
720 M€/year).  
Just as an illustration, CO2 emissions for both runs (Reference Run and Soft Landing) are pre-
sented graphically in Figure 5.1. The figure includes the shock runs for Solar PV, but results are 
not very different for the other cases. 
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Figure 5.1  CO2 emissions in Reference Run and Soft Landing scenario (incl. shock Solar PV) 
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5.5.2 Other results 
Below follows a short overview of other results. 
 
Reference Run + Shocks 1-10 (set 1) 
Table 5.12 gives the cumulative capacities installed of key technologies, both in the Reference 
Run and Shock Runs. Correspondingly, Table 5.13 gives the specific costs of key technologies. 
 
Table 5.12  Cumulative capacities installed (2050) as % of maximum [GW] 
Case  Maximum Reference Run Shock Run ∆ 
Solar PV modules 1000 0.6 0.6 0 
Wind turbine 1000 24.9 24.9 0 
Fuel cell 1000 0.0 0.0 0 
Gasifier 1000 45.4 47.7 2.4 
Gas turbine 1000 59.1 59.1 0 
Hydro turbine 1000 18.9 18.9 0 
Steam turbine 1500 41.3 59.1 17.8 
Boiler 1000 16.5 65.8 49.3 
Combined cycle boiler 1000 28.5 28.5 0 
Nuclear reactor 1000 6.2 6.2 0 
 
Table 5.13  Specific costs Reference Run (2050) in [€95/kW] 
Case  Initial costs 

1990 
Reference Run Shock Run % of costsRefRun ∆ 

Solar PV modules 7500 2127 1900 89 -228
Wind turbine 1400 440 245 56 -195
Fuel cell 2650 1217 1193 98 -24
Gasifier 800 310 177 57 -133
Gas turbine 450 243 189 78 -54
Hydro turbine 300 298 256 86 -41
Steam turbine 300 294 243 83 -51
Boiler 510 505 388 77 -117
Combined cycle boiler 500 334 217 65 -117
Nuclear reactor 1940 1919 1869 97 -50
 
As can be seen from Table 5.13, an R&D impulse in all cases has a positive (in the sense that 
the costs decrease) impact on the specific costs of the technology. However this does not lead 
by definition to more installed capacity as is illustrated by Table 5.12. For example, Solar PV 
modules reach a cost reduction of 11% (compared to costs in the Reference run) but are not in-
stalled more. The reason for this is the competition from other technologies: in earlier runs (i.e. 
when less clusters of learning technologies were implemented) Solar PV as well as Fuel Cells 
was installed (we will come back to this later in Section 5.5.3). From this result it can be con-
cluded that the number of learning technologies is important. 

Boilers, gasifiers and steam turbines are ‘winning’ technologies in R&D shock runs. As was al-
ready concluded in Section 5.5.1, renewable technologies do not seem to benefit from the R&D 
shocks applied (in terms of extra installed capacity). This is largely explained by the low carbon 
values (i.e. low carbon taxes and shadow prices) applied. Higher carbon taxes could have had a 
more beneficial impact on the penetration of renewable technologies. 
 
Just as an illustration, Figures 5.2, 5.4 and 5.6 give cumulative capacities installed (1990-2050) 
for wind turbines, gasifiers and combined cycle boilers in both sets of runs. Correspondingly, 
Figures 5.3, 5.5 to 5.7 give the specific technology costs.  
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Figure 5.2  Cumulative capacities of wind turbines 
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Figure 5.3  Specific costs of wind turbines 
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Figure 5.4  Cumulative capacities of gasifiers 
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Figure 5.5  Specific costs of gasifiers 
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Figure 5.6  Cumulative capacities of combined cycle boilers 
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Figure 5.7  Specific costs of combined cycle boilers 
 
Table 5.14 shows the energy system costs in the Reference and Shock runs. A negative value in 
the column ‘Difference’ means that the system costs are lower in the Shock run when compared 
to the Reference Run. As can be seen from Table 5.14, in every case the costs in the Shock runs 
actually are lower than in the Reference Run. The last column ‘∆ Total costs’ adds the absolute 
level of the shock applied to the cost difference calculated. Calculated like this, we conclude 
that in 6 out of 10 cases the investment of the R&D shock may be earned back by the decrease 
in energy system costs. 
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Table 5.14  Energy system costs (discounted 2050) Reference Run  Shocks [all in M€] 
Case  Costs Difference Shock ∆ Total costs 
Reference Run 54978519 - - - 
Solar PV modules 54977500 -1018 355000 353982 
Wind turbine 54962078 -16441 22000 5559 
Fuel cell 54978516 -3 100000 99997 
Gasifier 54966418 -12100 1000 -11100 
Gas turbine 54972475 -6044 5000 -1044 
Hydro turbine 54974734 -3784 2000 -1784 
Steam turbine 54970688 -7831 6400 -1431 
Boiler 54967257 -11261 4150 -7111 
Combined cycle boiler 54972194 -6324 3000 -3324 
Nuclear reactor 54977949 -569 17500 16931 
 
Soft Landing + Shocks 1-10 (set 2) 
Table 5.15 gives the cumulative capacities installed of key technologies, both in the Reference 
Run and Shock Runs. Correspondingly, Table 5.16 gives the specific costs of key technologies. 
 
Table 5.15  Cumulative capacities installed (2050) as % of maximum [GW] 
Case  Maximum Soft Landing Run Shock Run ∆ 
Solar PV modules 1000 0.6 0.6 0 
Wind turbine 1000 24.9 24.9 0 
Fuel cell 1000 0.0 0.0 0 
Gasifier 1000 5.6 11.7 6.0 
Gas turbine 1000 36.7 37.8 1.1 
Hydro turbine 1000 49.8 50.2 0.4 
Steam turbine 1500 35.8 36.4 0.5 
Boiler 1000 14.2 15.6 1.4 
Combined cycle boiler 1000 13.6 14.2 0.6 
Nuclear reactor 1000 17.7 17.7 0 
 
Table 5.16  Specific costs Soft Landing Run (2050) in [€95/kW] 
Case  Initial 

costs1990 

Soft Landing Run Shock Run % of 
costsSoftLand 

∆ 

Solar PV modules 7500 2127 1900 89 -228 
Wind turbine 1400 440 245 56 -195 
Fuel cell 2650 1217 1193 98 -24 
Gasifier 800 413 244  59 -169 
Gas turbine 450 283 240 85 -43 
Hydro turbine 300 296 226 76 -70 
Steam turbine 300 294 243 82 -52 
Boiler 510 505 458 91 -47 
Combined cycle boiler 500 349 247 71 -102 
Nuclear reactor 1940 1919 1812  94 -108 
 
As far as the relation between prices decreases and installed capacity, the results for the Soft 
Landing Scenario are comparable with these of the ‘Reference’ Scenario (Tables 5.12 and 5.13). 
However, other technologies are now favoured, though the effects (in terms of extra capacity 
installed) are less pronounced as in the Reference Run. When comparing the Reference Run and 
Soft Landing Run, the capacities of gasifiers, gas turbines and combined cycle boilers decrease. 
This is explained by the maximum CO2 emission levels set which the model has to accomplish 
(see also Table 5.8). For the same reason the model now ‘chooses’ Hydro and Nuclear Power 
instead. 
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In general, the impact of the R&D shocks - in terms of additional installed capacity - is less sig-
nificant than in the ‘Reference Scenario’. This can be explained by the fact, that already without 
the shock, a lot of technologies with high learning potential are installed.  
 
Table 5.17 shows the energy system costs in the Soft Landing and Shock runs. A negative value 
in the column ‘Difference’ means that the system costs are lower in the Shock run when com-
pared to the Reference Run. As can be seen from Table 5.17, in every case the costs in the 
Shock runs actually are lower than in the Soft Landing Run. The last column ‘∆ Total costs’ 
adds the absolute level of the shock applied to the cost difference calculated. Calculated like 
this, we conclude that in 4 out of 10 cases the investment of the R&D shock will be earned back 
by the decrease in energy system costs. When compared to the Reference Run plus shocks, in 
general the cost differences are lower (with the exception of hydro turbines and nuclear reac-
tors). After addition of the shock level, the technologies that are profitable are the same as in the 
Reference Run, though in the cases of gas and steam turbines the R&D shocks are not earned 
back any more in the Soft Landing runs. 
 
Table 5.17  Energy system costs (discounted 2050) Soft Landing Run + Shocks [all in M€] 
Case  Costs Difference Shock ∆ Total costs 
Soft Landing 55092754 - - - 
Solar PV modules 55091736 -1018 355000 353982 
Wind turbine 55076314 -16441 22000 5559 
Fuel cell 55092751 -3 100000 99997 
Gasifier 55089715 -3039 1000 -2039 
Gas turbine 55088785 -3970 5000 1030 
Hydro turbine 55085270 -7484 2000 -5484 
Steam turbine 55086848 -5907 6400 493 
Boiler 55086845 -5909 4150 -1759 
Combined cycle boiler 55089419 -3335 3000 -335 
Nuclear reactor 55089755 -3000 17500 14500 
 

5.5.3 Clarification of some results 
Lock out effects 
As stated in Section 5.5.2, technologies like Solar PV and Fuel Cells are not installed more de-
spite cost reductions achieved thanks to the R&D impulse (11% in the case of Solar PV). The 
explanation for this somewhat contradictory result is the competition from other technologies. 
This can be concluded based on earlier runs, i.e. when less clusters of learning technologies 
were implemented. At that time, Solar PV modules as well as Fuel Cells were installed. As an 
illustration, figure 5.8 shows the former results for Solar PV (relevant are the data labelled as 
SL and SL R&D).  
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Figure 5.8  Capacity of Solar PV modules after implementation of 2 clusters 
 
Looking at Figure 5.8, it is very clear that the capacity of Solar PV modules installed  (~ 200 
GW) is significantly higher than in the latest runs (i.e. after implementation of 10 clusters, see 
also Tables 5.12 and 5.15) where the capacity is fixed on the lower bound applied. From figure 
5.8, it is concluded that the number of learning technologies is important. 
 
Influence of Progress Ratio chosen 
As a sort of sensitivity analysis, the progress ratio of Solar PV modules was varied in the Soft 
Landing scenario. The results in terms of cumulative capacity installed are presented in Table 
5.18. This clearly shows the importance of the learning potentials and it may be that the pro-
gress ratio in case of Solar PV modules has been assumed too pessimistic. 
 
Table 5.18  Cumulative capacity [GW] of Solar PV, Soft Landing with varying progress ratios 
 1990 2000 2010 2020 2030 2040 2050 
PR = 0.82 0.1 0.95 3.1 3.1 3.95 6.1 6.1 
PR = 0.792 0.1 0.95 3.1 3.1 3.95 6.1 6.1 
PR = 0.70 0.1 0.95 3.1 3.4 3.95 6.1 6.4 
PR = 0.66 0.1 0.95 3.1 3.5 7.15 96 246 
 
Influence of Upper Bounds chosen 
After former runs, upper capacity bounds for wind turbines were installed on the basis of the 
latest DG TREN scenarios (LREM, 2002). As results, wind turbines become less attractive. 
 

5.6 Conclusions and Recommendations 
The fact that in the Reference Run calculations (i.e. with carbon values of 15 €/ton CO2 till 2010 
and 33 €/ton CO2 till 2030), the effects of R&D ‘shocks’ on CO2 emissions are negligible in all 
cases (i.e. also when renewable technologies are stimulated), demonstrates that the carbon val-
ues as applied are no stimulus for CO2 reduction. This confirms the results of other studies with 
the MARKAL Western Europe (see e.g. Gielen et al., 2000). 
 
In the Soft Landing Scenario the cumulative emissions are significantly lower than in the Refer-
ence Run (difference is 13%). However, this decrease is realised at significantly higher system 
costs (of 114 billion €). 
 
The impact of the R&D shocks - in terms of additional installed capacity - is less significant in 
the ‘Soft Landing’ than in the ‘Reference’ scenario. This is because of the fact that already 
without the shock, a lot of technologies with high learning potential are installed. This is neces-
sary in order to accomplish the maximum CO2 emission levels that are set in the Soft Landing 
scenario.  
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R&D shocks generally have a positive (i.e. price lowering) impact on the specific costs of the 
technology. However, this does not by definition lead to more install capacity (e.g. Solar PV 
and Fuel Cells). The reason for this is the competition from other technologies. It should be kept 
in mind that both Solar PV and Fuel Cells were attractive in previous MARKAL SAPIENT cal-
culations when only 6 clusters were implemented (so for instance boilers and steam turbines 
were not yet a learning or key technology). After the addition of the gasifier cluster, Solar PV 
and Fuel Cells seem to be effectively locked out because implementation of gasifiers becomes 
more cost effective due to the learning process. This shows the importance of a proper and bal-
anced identification of clusters of learning technologies and the various learning potentials. The 
learning potential of the more conventional technologies may now be assumed to be too opti-
mistic. It is recommended to review the resulting floor costs of these technologies in more de-
tail: can such cost reductions really be achieved? 
 
On the other hand, the learning potentials of renewable technologies like Solar PV modules may 
be assumed too pessimistic. A quick sensitivity check has shown that with a (historically very 
low) progress ratio of 0.66 solar PV is implemented, even in the case of 10 clusters of learning 
technologies. 
 
The indirect approach to 2FLC and the used R&D statistics lead to only marginal changes in 
progress ratios. So, even beforehand, little impact was to be expected, certainly for the renew-
able technologies. Comparison with the MARKAL TEEM experiments learns that for instance 
substantially lower progress ratios and/or a more stringent CO2 policy can make technologies 
like Solar PV cost-effective. This demonstrates that model assumptions are extremely important 
for the results. 
 
Given the previous conclusions above, one should be very careful to derive very technology 
specific conclusions from these MARKAL calculations. With other (equally probable or plausi-
ble) assumptions, technologies like solar PV and fuel cells could become attractive as well. 
 
The MARKAL SAPIENT results indicate that R&D policy can never stand on its own. R&D 
can certainly help to reduce specific technology costs but to get technologies into the market 
additional policy measures are needed. Such market policy measures could be upper emission 
quota or minimum quantity obligations for specific technologies. The combination of the two (a 
combination of technology push and market pull) might lead to more socially desired outcomes.  
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

• For the first time a large number of learning technologies have been successfully imple-
mented in a large-scale integrated energy model. With 10 learning key components and 
about 60 technologies affected by learning we have been able to keep solutions times within 
realistic limits.  

 
• Uncertainty is an important element in the use of energy models for energy forecasting. 

With the use of a Monte Carlo analysis the most sensitive parameters leading to object val-
ues can be determined as well as their impact weight. The results of an uncertainty analysis 
in progress ratios of wind turbines and comparing this to the impact of R&D on the progress 
ratio indicate that the uncertainty in the progress ratio is more important than the estimated 
effect of R&D-expenditures on the progress ratio. This finding supports the idea that it is 
more important to obtain good data for the one-factor learning curve parameters, than to in-
troduce a more complex two-factor learning curve (either indirect or direct). 

 
• For several reasons, elaborated in Chapter 2, ECN has chosen to explore an alternative ap-

proach to the two-factor learning curve, to model the impact of R&D on technology learn-
ing. This alternative approach is to assume a relationship between the R&D-intensity of a 
technology (the percentage of R&D-expenditure divided by the sum of the R&D-
expenditure and the total sales over a given period) and its progress ratio. Based on three 
observations (fuel cells, wind turbines and solar PV) a linear relation between the two pa-
rameters was assumed. This exercise suggested a learning-by-doing progress ratio (learning 
without any R&D) of about 95%. 

 
• Applying ‘R&D-shocks’ to technologies selected using the R&D-intensity approach led to 

several insights. In the first place, it appeared that the scenario conditions (especially with 
regard to expected carbon prices) had much more impact on the model outcomes than en-
hancing the progress ratio of specific technologies as a result of additional R&D-
expenditures. These results indicate that R&D-policy can never stand on its own. R&D can 
certainly help to reduce specific technology costs, but to get technologies into the market, 
deployment policies and external cost pricing are necessary as well. The fact that new tech-
nologies have to compete with more conventional technologies that are also able to learn 
(‘moving targets’) makes it much more difficult for them to enter the market.  

 
• Evaluating the R&D-intensity approach to model technology learning, one can say that the 

positive news is that it is a feasible approach for large integral energy models. However, 
several of the assumptions behind this model need to be checked. The data on which this 
model is based are very scarce: only three technologies (wind turbines, fuel cells and solar 
PV) that are rather new to the energy sector. A characteristic of these technologies is that a 
very important part of R&D-spending is public R&D.  However, it can be expected that if 
these technologies enter the market more substantially, there will be a shift from public to 
private R&D, meaning that the assumption that public R&D-spending is representative for 
total R&D-spending doesn’t hold anymore. Also it is difficult to get enough data to assess 
the R&D-intensity over a certain period. For several technologies one would have to go to 
analyse large industrial sectors outside the energy system (e.g. the aviation industry for gas 
turbines, or the ICT-industry for cost reduction of electronics).  
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• Much of the theoretical and data problems mentioned above are shared with other ap-
proaches to model R&D-spending on technology learning, such as the two-factor learning 
curve. This means that one should be careful at this moment in drawing robust policy con-
clusions from the exercises done in the SAPIENT project. Exploring different approaches 
(2FLC and R&D-intensity) the SAPIENT energy modellers learned a lot. To continue fur-
ther riding of our own experience curve combinations of these approaches or new ap-
proaches will have to be explored in the future.  
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ANNEX A: OVERVIEW OF TECHNOLOGIES CONSIDERED 

Table A.1  Technologies in MARKAL 
Code Corresponding technology 
BD1 Lignine boiler large industrial cog. 
BD2 Lignine gasifier large industrial cog. 
BE1 Wood gasification small industrial cog. 
BE2 Wood gasification CC power plant 
BE3 Biomass gasifierdedicated CC (NH) 
BE4 Biomass gasifier SOFC 
BE5 Co-firing wood chips in coal fired plant 
BE6 IGCC with co-gasification of biomass 
BE7 Biomass gas turbine plant 
BE8 Biomass gasifierdedicated CC (NH) STW 
BE9 Biomass gasifier FT-fuel/elec. co-prod 
BI4 HTU oil/CC power plant 
EC2 Existing pulverised coal fired p.p. 
EC3 Existing lignite fired power plant 
EC4 New pulverised coal fired power plant 
EC5 Integrated coal gasification p.p. 
EC6 New lignite fired power plant 
EC7 Integrated lignite fired power plant 
EC8 Integrated Coal Gasification SOFC plant 
ECA Coal FBC CHP plant 
ED0 Existing oil fired power plant 
ED1 New oil fired power plant 
ED2 Oil gasification combined cycle p.p. 
EG0 Existing gas fired power plant 
EG1 Gas turbine peaking plant 
EG2 Existing CC power plant 
EG3 New CC power plant 
EG4 Combined cycle SOFC power plant 
EGA Existing gas turbine CHP plant 
EGB Existing CC CHP plant 
EGD New gas turbine CHP plant 
EGE New CC CHP plant 
EGG HERON SOFC total energy for H, C and A 
EH0 Medium and high head hydro 
EH1 Low head hydro 
EH2 Hydro pumped storage 
EH3 Archimedes Wave Swing 
EH5 Hydro Iceland for Aluminium smelters 
EI1 Waste to energy plant (incinerator) 
EI2 Waste to energy plant (Lurgi gasifier) 
EI3 Waste to energy plant (Gibros PEC) (PEC = Product and Energy Plant) 
EN0 LWR power plant 
ES1 Solar PV in Northern Europe 
ES2 Solar PV roofs southern ESP, IT, GR 
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Code Corresponding technology 
ES3 Solar PV in Central Europe 
ES4 Solar PV roofs/barren land cent. ESP, IT 
ES5 Solar PV: import from North Africa 
EW4 Large onshore wind turbine - inland 
EW5 Large onshore wind turbine - shore 
EW6 Off-shore wind turbine - near shore 
EW7 Off-shore wind turbine - off shore 
EXA Steam turbine industry 
T05 Fuel Cell car with MF and RB (RB = Regenerative braking) 
T0F Fuel Cell car with MF (MF = Modified frame) 
T15 Fuel Cell van with MF and RB 
T1F Fuel Cell van with MF 
T23 Fuel Cell Truck with MF and RB 
T2F Fuel Cell Truck with MF 
T3F Fuel Cell bus with MF and RB 
 
 
Table A.2  Technologies in POLES 
Code Corresponding technology 
HYD Large Hydro 
NUC Nuclear LWR 
NND New Nuclear Design (Evolutionary type) 
LCT Lignite Conventional Technology 
CCT Coal Conventional Technology 
PFC Pulverized Fuel Supercritical Coal 
ICG Integrated Coal Gasification 
ACT Advanced Thermodynamic Cycle 
OCT Oil Conventional Technology 
OGT Oil in GTCC 
GCT Gas Conventional Technology 
GGC Gas in GTCC 
CHP CHP 
SHY Small hydro 
WND Wind 
SPP Solar Thermal Power Plant 
DPV Decentralised PV (building integrated) 
RPV Rural PV (electrification in LDCs) 
BF2 Electricity production from waste 
BGT Biomass gasification + GTCC 
FCV Fuel Cell Vehicle (PEMFC) (PEM = Proton Exchange Membrane) 
SFC Solid oxide FC 
MFC Molten Carbonate fuel cells 
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ANNEX B: SUMMARY OF COUPLING FACTORS USED 

Table B.1  Selected MARKAL technologies/processes 
Description Key technologies → 

ES
K

 

W
TK

 

FC
K

 

G
FK

 

G
TK

 

H
Y

K
 

ST
K

 

B
O

K
 

C
C

K
 

N
U

K
 

Lignine boilerlarge industrial cog.       1.0 1.0   
Lignine gasifierlarge industrial cog.    1.0 0.6  0.4    
Wood gasificationsmall industrial cog.    1.0 0.6  0.4    
Wood gasificationCC power plant    1.0 0.6  0.4  0.4  
Biomass gasifierdedicated CC (NH)    1.0 0.6  0.4  0.4  
Biomass gasifierSOFC   0.6 1.0 0.2  0.2  0.2  
Co-firing wood chips in coal fired plant       1.0 1.0   
IGCC with co-gasification of biomass    1.0 0.6  0.4  0.4  
Biomass gas turbine plant    1.0 1.0      
Biomass gasifierdedicated CC (NH) STW    1.0 0.6  0.4  0.4  
Biomass gasifier FT-fuel/ele co-prod    1.0 0.6  0.4  0.4  
HTU oil/CC power plant     0.67  0.33  0.33  
Existing pulverised coal fired p.p.       1.0 1.0   
Existing lignite fired power plant       1.0 1.0   
New pulverised coal fired power plant       1.0 1.0   
Integrated coal gasification p.p.    1.0 0.6  0.4  0.4  
New lignite fired power plant       1.0 1.0   
Integrated lignite fired power plant    1.0 0.6  0.4  0.4  
Integrated Coal Gasification SOFC plant   0.6 1.0 0.2  0.2  0.2  
Coal FBC CHP plant       1.0    
Existing oil fired power plant       1.0 1.0   
New oil fired power plant       1.0 1.0   
Oil gasification combined cycle p.p.    1.0 0.6  0.4  0.4  
Existing gas fired power plant       1.0 1.0   
Gas turbine peaking plant     1.0      
Existing CC power plant     0.67  0.33  0.33  
New CC power plant     0.67  0.33  0.33  
Combined cycle SOFC power plant   0.8  0.12  0.08  0.08  
Existing gas turbine CHP plant     1.0      
Existing CC CHP plant     0.67  0.33  0.33  
New gas turbine CHP plant     1.0      
New CC CHP plant     0.67  0.33  0.33  
HERON SOFC total energy for H, C and A   0.8  0.2      
Medium and high head hydro      1.0     
Low head hydro      1.0     
Hydro pumped storage      1.0     
Archimedes Wave Swing      1.0     
Hydro Iceland for Aluminium smelters      1.0     
Waste to energy plant (incinerator)        1.0   
Waste to energy plant (Lurgi gasifier)    1.0    1.0   
Waste to energy plant (Gibros PEC)    1.0    1.0   
LWR power plant        1.0  1.0 
Solar PV in Northern Europe 1.0          
Solar PV roofs southern ESP, IT, GR 1.0          
Solar PV in Central Europe 1.0          
Solar PV roofs/barren land cent. ESP, IT 1.0          
Solar PV: import from North Africa 1.0          
Large onshore wind turbine - inland  1.0         
Large onshore wind turbine - shore  1.0         
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Description Key technologies → 
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Off-shore wind turbine - near shore  1.0         
Off-shore wind turbine - off shore  1.0         
Steam turbine industry       1.0 1.0   
Fuel Cell car with MF and RB   4.0        
Fuel Cell car with MF   4.0        
Fuel Cell van with MF and RB   2.2        
Fuel Cell van with MF   2.2        
Fuel Cell Truck with MF and RB   0.74        
Fuel Cell Truck with MF   0.74        
Fuel Cell bus with MF and RB   1.18        

*) Because transport (demand) technologies have a special unit in the EU MARKAL model (PJ to the wheels rather than vehicle 
kilometers) and because of lifetime/replacement considerations of the fuel cell stacks, these coupling factors have calculated dif-
ferently than for other technologies  
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ANNEX C: OVERVIEW OF BOUNDS APPLIED 

Table C.1  Upper bounds on capacity in scenario NOREBNDS [GW] 
Code Description 1990 2000 2010 2020 2030 2040 2050 

BE1.UP Wood gasificationsmall industrial cog. - 10 12.14 14.29 16.43 18.57 20.71 
BE2.UP Wood gasificationCC power plant 0.1 0.55 1 13 25 25 25 
BE3.UP Biomass gasifierdedicated CC (NH) - 2 8.5 15 15 15 15 
BE5.UP Co-firing wood chips in coal fired pl. - 0.1 25 25 25 25 25 
BE6.UP IGCC with co-gasification of biomass - 4 47 90 - - - 
BE7.UP Biomass gas turbine plant 5 15 25 25 25 25 25 
BE8.UP Biom.gasifierdedicated CC (NH) STW - 2 6.33 10.67 15 15 15 
BE9.UP Biomass gasifier FT-fuel/ele co-prod - 17.33 33.67 50 62.5 75 87.5 
BI4.UP HTU oil/CC power plant - 0.1 1 13 25 25 25 
EC2.UP Existing pulverised coal fired p.p. 115.8 94.72 45.95 0.002 0.002 0.002 0.002
EC3.UP Existing lignite fired power plant 38.7 25.56 14.34 0.002 0.002 0.002 0.002
EC4.UP New pulverised coal fired power plant - 14.68 - - - - - 
EC5.UP Integrated coal gasification p.p. - 4 47 90 - - - 
EC6.UP New lignite fired power plant - 4.36 - - - - - 
EC7.UP Integrated lignite fired power plant - 1 15.5 30 - - - 
ECA.UP Coal FBC CHP plant 4.58 4.5 - - - - - 
ED2.UP Oil gasification combined cycle p.p. - 1 15.5 30 - - - 
EG0.UP Existing gas fired power plant 43.41 44.86 - - - - - 
EG2.UP Existing CC power plant 1.7 1.31 0.91 0.456 0.002 0.002 0.002
EG3.UP New CC power plant - 36.31 - - - - - 
EGA.UP Existing gas turbine CHP plant 7.18 5.18 5.18 2.59 - - - 
EGB.UP Existing CC CHP plant 0.67 0.67 0.67 - - - - 
EGC.UP Exist. gas eng. gen. set for H, C and A 0.98 0.98 0.002 0.002 0.002 0.002 0.002
EGD.UP New gas turbine CHP plant - 13.59 24.34 25.12 25.9 25.9 25.9 
EGE.UP New CC CHP plant - 6.83 7.5 7.68 7.85 7.85 7.85 
EGF.UP New gas eng. gen. set for H, C and A - 12.11 21.2 21.63 22.05 22.05 22.05 
EI1.UP Waste to energy plant (incinerator) 0.565 1.98 2.93 3.99 5.14 6.32 7.23 
EN0.UP LWR power plant 118.4 126.7 126.7 126.7 107.7 107.7 107.7 
 
 
Table C.2  Overview upper bounds on investment in scenario NOREBNDS [GW] 
Code Description 1990 2000 2010 2020 2030 2040 2050 
ED0.UP Existing oil fired power plant - - - - 0.001 0.001 0.001 
EGA.UP Existing gas turbine CHP plant - - - - 0.001 0.001 0.001 
EGB.UP Existing CC CHP plant - - - 0.01 0.010 0.010 0.010 
EN0.UP LWR power plant 37.77 8.31 2.63 45.04 45.410 38.920 32.440 
 
 
Table C.3  Lower capacity bound solar PV in scenario NOREBNDS [GW] 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATSOLARLO Total Solar PV  

(= ∑ES1-ES5) 
0 0 3 3 3 3 3 
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Table C.4  Upper capacity bounds wind in scenario NOREBNDS [GW] 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATWTON Total wind onshore 

(EW4+5) 
1 13 72 103 123 130 136 

RATWTOFF Total wind offshore 
(EW6+7) 

0.09 0.5 6.5 57 103 135 148 

 
 
Table C.5  Lower capacity bound solar PV scenario NOREBNDS [GW] 
Constraint Description 1990 2000 2010 2020 2030 2040 2050 
RATWTOFFLO Total wind offshore 

(EW6+7) 
0 0 5 5 5 5 5 
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ANNEX D: COMPARISON OF MODEL DATA 

D.1 Background to and purpose of this appendix 
Good modelling requires at least two things. A good model structure and a reliable model data 
set. Both items have received considerable attention during the SAPIENT project. With regard 
to data the SAPIENT team has spent considerable time to get a reliable set of historical data on 
investment costs developments and R&D-expenditures. This was done primarily to estimate re-
liably learning-by-doing and learning-by-searching elasticity’s for investment costs (the two-
factor learning curve). However, large-scale models do still not always work in the ETL (En-
dogenous Technology Learning) mode and apart from this also other important data, apart from 
investment costs, do characterise a technology in the model databases. 
 
There are many different possible causes if differences in outcomes between models occur. Per-
haps two different classes of these causes can be distinguished. Either the model structure and 
assumptions are different, or the model data differ. The former cause is often subject of discus-
sion. However, the latter cause might be as important. To get some feeling for how small or 
large differences in data currently are, the SAPIENT team decided to make a comparison of a 
small part of technology characterisation data that the models used in SAPIENT have in com-
mon. 
 
How is this Annex structured? In Section D.2 an explanation will be given how the comparison 
will be made. This includes a description of what kind of data will be compared and also an ex-
planation on some specifics of data in each model. In section D.3 the comparison will be made. 
For three technologies (wind, hydro and PV) we will look at investment costs, O&M costs 
(fixed and variable), estimated lifetime and estimated availability of the technologies consid-
ered. In section D.4 we will recapitulate the main conclusions and put forward some recommen-
dations for future research activities. The main recommendation is that in the near future much 
more time should be spent on data acquisition, validation and convergence between the different 
models. 
 

D.2 How the comparison will be made 
 
Input data of six different models have been compared. These models are PRIMES, POLES, 
MARKAL, MESSAGE, ERIS, and MERGE-ETL. Since the databases of most of these models 
are huge, we restricted our analysis to technology characterisation data that influence costs of 
three different technologies. These technologies are wind turbines (on shore and off shore), hy-
dro plants (varying from pumped storage hydro in one model to small run-of-the-river hydro 
power plants in another) and grid-connected PV-systems.  
 
The time span of the different models varies substantially. POLES, PRIMES, MERGE-ETL and 
ERIS provided data up to 2030. MARKAL (i.e. the database for SAPIENT) includes data up to 
2050. MESSAGE data continue until 2100. Another difference between the models is that ERIS 
and MERGE-ETL are purely ETL models. This means that these models only include invest-
ment cost data for the first model year exogenously. The investment costs for the other years are 
calculated within the model. These outcome data are not presented here. They would obviously 
differ per scenario. Therefore the input data for the ETL models ERIS and MERGE-ETL are 
presented as being constant over time. The other models can also run in the ETL-mode, but are 
still often used as non-ETL models. So, for POLES, PRIMES, MESSAGE and MARKAL the 
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input data from the non-ETL variants have been used to compare the data that are the result of 
different expert opinions on future cost trends. 
 
The data from MARKAL are the data used in the Western Europe (i.e. EU plus Norway and 
Switzerland) database of this model. MESSAGE data represent estimated global averages. 
PRIMES cover data on all the EU Member States. POLES, ERIS and MERGE-ETL are global 
models with regions (EU is one of these). 
 
Data on renewable technologies in PRIMES recently have undergone a large revision.  Data 
have been differentiated per EU Member State. In the comparison the simple average of these 
data has been used as a proxy for the PRIMES-data.  
 
All data have been converted into US$ of the year 2000. This has been done in the case of non-
US currencies (ECU, Euro) of other years by first converting into US$ in that year and then 
converting to US$ of the year 2000, using the US Consumer Price Index. 
 

D.3 Comparison of model data 

D.3.1 Investment costs 
 
Hydropower 
Table D.1 gives an overview of the different investment costs assumptions in the different mod-
els with regard to hydropower options: 
 
Table D.1  Overview of investment costs for hydropower technologies in the different models 

[US$(2000)/kW] 
  1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
MESSAGE high 4018 4018 4018 4018 4018 4018 4018 4018 4018 4018 4018 4018
 low 1339 1339 1339 1339 1339 1339 1339 1339 1339 1339 1339 1339
MARKAL medium 

and high 
head 

2328 2346 2362 2380 2397 2415 2431      

 low head 3696 3696 3696 3696 3696 3696 3696      
 pumped 

storage 
3403 3403 3403 3403 3403 3403 3403      

ERIS  3562 3562 3562 3563 3562 3562 3562      
POLES  4580 4336 4123 3876 3665        
PRIMES(Run 
of river) 

small  2055 1958  1860        

 medium  2209 2104  1999        
 large  2362 2250  2137        
 
Figure D.1 gives the same figures, but now presented graphically. 
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Figure D.1  Overview of  investment costs for hydro power technologies in the different models 
 
Analysing the table and figure several specific observations with regard to investment costs for 
hydropower can be made: 
• The estimation of investment costs for hydropower technologies range from less than 1500 

$/kW to over 4000$/kW. 
• These differences are partly due to different circumstances in which hydropower stations 

can be building. Most of the models make this explicit by defining a set of different hydro 
technologies: high head or low head (MARKAL), high costs or low costs (MESSAGE) or 
small, medium and large Run of the River-systems (PRIMES).  

• POLES and Eris only have one hydro technology defined. Both these models have estima-
tions that are on the high side of the range. Apparently these models refer to low-head, 
small-scale hydro technologies only. 

• The POLES and the PRIMES model are the only models that assume that cost reductions 
for hydro technologies will be realised in the future. The other models assume constant in-
vestment costs for hydro technologies, apparently considering hydro as a technology with 
no learning potential anymore. 

• In the case of medium and high-head hydropower the MARKAL model assumes a slight 
increase of costs (this might reflect the expectation that stricter environmental rules will ap-
ply to large-scale hydropower stations in the future which will lead to some extra required 
investments). This is a similar trend to what has happened in the nuclear sector. 

• Since Run-of-River systems often are low-head options, these figures from PRIMES can be 
best compared to the low-head or large-scale options in the other models. This shows that 
the PRIMES figures are substantially lower than the figures in the other models. 

 
Wind power 
Table D.2 gives an overview of the different investment costs assumptions in the different mod-
els with regard to wind power options: 
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Table D.2  Overview of investment costs for wind power technologies in the different models 
[US$(2000)/kW] 

  1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
MESSAGE  1875 1748 1458 1153 864 648 589 536 496 450 423 387
MARKAL inland 1566 1361 1178 1144 1144 1144 1144   
 coast 1538 1341 1144 1116 1116 1116 1116   
 near-

shore 
 2627 2056 1824 1715 1661 1634   

 offshore   2464 2178 2056 1988 1960   
Eris   1035 1035 1035 1035 1035 1035   
POLES   2021 1940 1860 1779   
Merge-ETL   986 986 986 389 389 389   
PRIMES 
Onshore 

small  999 833 666   

 medium  959 799 639   
 large  979 816 653   
Offshore small  2107 1756 1405   
 medium  1985 1654 1323   
 large  2038 1698 1358   
 
Figure D.2 gives the same figures, but now presented graphically. 
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Figure D.2  Overview of investment costs for wind power technologies in the different models 
 
Analysing the table and figure several specific observations with regard to investment costs for 
wind power can be made: 
• There are large differences between the estimated costs for wind power. Onshore wind 

power investment costs for the year 2000 for instance vary from 959 $/kW (PRIMES-
medium) to 1748 $/kW (MESSAGE) and even 2021 $/kW (POLES). However most models 
assume investments costs of around 1000 $/kW in 2000. 

• The POLES figures for wind power investment costs correspond to the estimated costs of 
wind offshore technologies in the other models. These cost estimations for the year 2000 
range from 1985 $/kW (PRIMES-medium) to 2627 $/kW (MARKAL near-shore). This is 
still a difference of more than 30%. 

• All models assume that investment costs for wind will decline in the future. MARKAL as-
sumes this learning effect will stop after 2020. Other models assume continuous cost reduc-
tions, until a level of around 400 $/kW for onshore wind (in 2100). 

• The differences between the different options for PRIMES (small, medium and large) are 
not substantial. It seems as if the model could be simplified by only defining one on-shore 
and one offshore technology. 
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Solar PV 
Table D.3 gives an overview of the different investment costs assumptions in the different mod-
els with regard to solar PV. 
 
Table D.3  Overview of investment costs for solar PV technologies in the different models 

[US$(2000)/kW] 
  1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

MESSAGE  6830 6190 4780 3419 2158 1157 970 813 695 581 505 426
MARKAL North-

Eur. 
 6807 2695 2076 1457 1266 1266   

 South-
Eur. 

 6807 2695 2076 1457 1266 1266   

 Centra
l Eur. 

 6807 2695 2076 1457 1266 1266   

 Import 
from 
Africa 

 7828 3744 2695 2076 1457 1457   

Eris   5000 5000 5000 5000 5000 5000   
POLES Rural 

in DC 
 22896 21409 18436   

 Roof 
with 
grid 

 13016 7999 7228 6457   

PRIMES small  4500 2850 1150   
 mediu

m 
 4500 2850 1150   

 large  4500 2850 1150   
 
Figure D.3 gives the same figures, but now presented graphically. 
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Figure D.3  Overview of investment costs for solar PV technologies in the different models 
 
Analysing the table and figure several specific observations with regard to investment costs for 
solar PV technologies can be made: 
• Most models converge with regard to investment costs estimations for the year 2000 around 

5000 $/kW. PRIMES has an estimate just below that, MESSAGE and MARKAL just above 
this level. 

• POLES figures are substantially higher than those of the other models. One technology op-
tion in POLES (PV for rural areas in developing countries) can be regarded as another tech-
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nology (solar home systems). For the other POLES options the reasons of this difference is 
not clear. 

• MARKAL, POLES and PRIMES assume a very substantial cost reduction in the first dec-
ade of the 21st century. After that the speed of cost reductions slow down in this model. 

• Expected prices in 2030 for models other than POLES vary between 1150 $/kW (PRIMES) 
and 2158 $/kW (MESSAGE). MESSAGE estimates for 2040 are close to the 1200 $/kW 
figures of the other models. 

• MESSAGE expects continuing declining costs at least until the year 2100 (426 $/kW). 
 
General conclusions with regard to investment costs  
A detailed analysis of the investment costs of just three technologies shows that large differ-
ences (up to 100%) in investment cost estimations exist between the different models. Some-
times this can be explained by differences in assumptions about a certain variant of the technol-
ogy (e.g. high-head or low-head hydropower, wind onshore or wind offshore).  However, this is 
not always the case. Since investment costs are one of the major determinants of electricity pro-
duction costs in the case of renewable technologies, these differences in assumptions lead with-
out any doubt to differences in model outcomes. 
 

D.3.2 Fixed Operation and Maintenance (O&M) costs 
 
The next three figures give a summary of O&M costs estimates for the same three renewable 
technologies in the different models: 
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Figure D.4  Overview of fixed O&M costs for hydropower technologies in the different models 
 
Looking at Figure D.4 the following observations can be made: 
• All estimates are between the MESSAGE-high and MESSAGE-low estimates.  
• Except for POLES none of the models assume cost reductions for fixed O&M costs for hy-

dropower.  
• MARKAL, POLES and Eris assume fixed O&M costs for hydro of about 50 $/kW/year 
• PRIMES figures are about 50% lower than the estimates of MARKAL, POLES and Eris 
 
Fixed O&M costs for hydro contribute to about 10% of the hydro electricity production costs. A 
difference of 50% in fixed O&M costs leads to a difference of about 5% in calculated produc-
tion costs. Clearly the importance of fixed O&M costs is not as important as investment costs 
assumptions in the case of hydro technologies.  
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Figure D.5  Overview of fixed O&M costs for wind power technologies in the different models 
 
Looking at Figure D.5 the following observations can be made: 
• All models assume future costs reductions for fixed O&M costs in the case of wind energy, 

except for Eris and Merge-ETL. 
• MESSAGE is rather pessimistic compared to the other models. Current cost levels will only 

be reached at the end of the 21st century in the MESSAGE model. 
• Eris is also rather pessimistic compared to the other models. 
• PRIMES, MARKAL and POLES’ estimations for fixed O&M costs for wind come pretty 

close to each other: 
- They all assume current fixed O&M costs for wind offshore options of about 60-70 

$/kW/year. Over time this will be reduced to about 50 $/kW/year. 
- They all assume current fixed O&M costs for wind onshore options of about 30 

$/kW/year, which will be reduced to 15-20 $/kW/year in the future. 
 
Fixed O&M costs contribute to about 15-20% to electricity production costs in the case of wind 
energy. With the small differences in input costs data for PRIMES, MARKAL and POLES, will 
not have a big impact on model outcomes. The difference with the models Eris and especially 
MESSAGE however might lead to a difference in outcome of about 5-10%.  
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Figure D.6  Overview of fixed O&M costs for solar PV technologies in the different models 
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Looking at Figure D.6 the following observations can be made: 
• Also for solar PV, MESSAGE has by far the highest fixed O&M costs assumptions (more 

than 140$/kW/year in the year 2000). 
• The differences in the other models are also quite substantial. From 10 $/kW/year to about 

45 $/kW/year. For PRIMES this is related to the size of the units. Smaller units have higher 
fixed O&M costs than larger units. 

• PRIMES and Eris do not assume any cost reductions over time.  
 
With fixed O&M costs of about 30 $/kW/year the contribution to electricity production costs is 
somewhere between 5% and 10%. Except for the MESSAGE figures, this means that the differ-
ences in outcomes for electricity production costs will not be substantial.   
 
Fixed O&M costs conclusions 
In the case of hydropower substantial differences exists between the estimation of fixed O&M 
costs. For wind and solar technology these differences are lower, at least for most models. Since 
for renewable energy technologies fixed O&M costs do not constitute a substantial part of elec-
tricity production costs, these differences are not that important. However, added up to other 
differences (in investment costs or other cost-influencing variables), it contributes to differences 
in outcomes. Another important observation is that, whereas investment costs are often assumed 
to decline over time, this is not always the case for fixed O&M costs. Whether this is due to ex-
pert opinions that do not expect any decline in these costs over time, or whether it is due to a 
lack of study and understanding of O&M-cost processes and developments within these proc-
esses, is something to be made clearer in the future. 
 

D.3.3 Variable Operation and Maintenance (O&M) costs 
 
The three figures below give an overview of the differences in variable O&M costs for the three 
renewable technologies.  
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Figure D.7  Overview of variable O&M costs for hydropower in the different models 
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Figure D.8  Overview of variable O&M costs for wind power in the different models 
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Figure D.9  Overview of variable O&M costs for solar PV technologies in the different models 
 
As is apparent in Figures D.7 to D.9 the estimates for variable O&M costs apparently are an un-
der-studied item. There is only one model (POLES) that has estimated any values for variable 
O&M costs for all three technologies. The others either think there are not always variable 
O&M-cost or have estimated it to be too unimportant to put any effort in establishing good fig-
ures for this. What is striking is that none of the models assumes any variable O&M cost reduc-
tions over time. This seems highly unlikely in case of new technologies for which much learn-
ing still can be expected (wind and solar). That variable O&M costs are important can be seen 
when comparing the costs that are assumed (if they are assumed) with electricity market prices: 
0.3 $cents/kWh is in the neighbourhood of 10% of electricity market prices, which is not negli-
gible.  
 

D.3.4  Lifetime 
 
The next three Figures give an overview of another factor that determine electricity production 
costs in the different models: the lifetime of the technology. 
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Figure D.10  Estimates for lifetime of hydropower options in the different models 
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Figure D.11  Estimates for lifetime of wind power options in the different models 
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Figure D.12  Estimates for lifetime of solar PV technologies in the different models 
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The following observations can be made: 
• For hydro power plants values vary from 30 years lifetime to 75 years lifetime.  
• PRIMES data for hydro lifetime vary from 40 to 60 years, depending on the scale. 
• For wind lifetime expectations vary also. 30-40 years for wind onshore and 15-30 years for 

wind offshore. 
• For solar PV lifetime expectations vary from 15 to 30 years. 
• POLES is the only model that assumes improvements in lifetime figures for one technol-

ogy: solar PV. In all other cases and in all other models no improvement in lifetime is ex-
pected (no learning here). 

 
Lifetime has a substantial impact on electricity production costs. Since differences are large in 
the models (in the order of 100%), electricity production costs outcomes will also be very dif-
ferent. Longer lifetimes will in general favour capital-intensive technologies such as renewable 
technologies. 
 

D.3.5 Availability 
 
A last input data set that cannot be neglected is the number of hours per year a technology is as-
sumed to be able to produce at full capacity: the availability of the technology. The availability 
of capital-intensive technologies is, apart from variable O&M costs, inversely linear with the 
electricity production costs. In the next three Figures you will find the input model data on this 
aspect for the different models. 
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Figure D.13  Estimates for availability of hydropower options in the different models 
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Figure D.14  Estimates for availability of wind power options in the different models 
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Figure D.15  Estimates for availability of solar PV technologies in the different models 
 
The following observations can be made: 
• For hydro the ERIS assumptions seem to be on the low side comparing it to the other mod-

els. The MARKAL-hydro pump storage figures compares to 100% availability, which 
might be possible in the case of pumped storage facilities. 

• In general hydro figures for availability varies from 3500 to 4500 hours/year. This is still a 
difference of a little bit less than 30%. 

• For wind offshore the figures vary from 2400 hours/year (PRIMES) to 3200 hours/year 
(MARKAL). This is a difference of 33%. 

• For wind onshore the figures vary from 1600 hours/year to 2200 hours/year. This is a rela-
tive difference of 35%-40%. 

• The PV availability varies very much with a reason. It is the way to distinguish PV-
technology applications in different areas of the world. Still the MESSAGE figure of 2200 
hours as a world average seems very high, whereas the PRIMES average of 600 hours for 
Europe might be on the low side. Compared to MARKAL northern Europe figures (900 
hours) this is a relative difference of 30%. 

• In none of the models for none of the technologies availability is expected to increase. Ap-
parently the modellers estimate that no efficiency gains can be expected anymore with re-
gard to the current state-of-the-art in hydro, wind and solar power technology. 
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In general one can observe that availability figures differ substantially from each other, whereas 
availability is one of the most important factors in calculating electricity production costs.  
 

D.4 Conclusions and recommendations 
 
The following conclusions can be drawn: 
• Most attention and efforts have been spent to investigating the development of investment 

costs. There is a lack of knowledge on the development of the other 4 factors that determine 
electricity production costs: Fixed O&M costs, variable O&M costs, lifetime and availabil-
ity. 

• Recent insights in developments in investment costs (Technology Improvement Database) 
have not always been implemented in the models. Investment costs figures have only be 
used to estimate learning curve factors, not to harmonise year 2000 investment costs as-
sumptions. 

• There is a need for a better investigation of the other factors influencing electricity produc-
tion costs.  

• Especially (developments in) availability and lifetime deserve attention and harmonisation.  
• Although O&M costs are somewhat less important for capital-intensive technologies such 

as renewable, differences can still be substantial. More knowledge and discussion is needed 
on these items.  

• In general it can be concluded that more time and attention for model data in future work 
will enhance the quality of models and the comparability of their outcomes.  
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